
AD-A261 359 ION PAGE . , I
1 HI MB No. 0704-0198

"-.. . .....'TE 3 REPORT TYPE AND DATES COVERED

11-15-92 Final Report 9/15/91-9/14!9Z
4. TITLE AND SUBTITLE 5 FUNDING N UMBERS
Investigation of Coupled Analysis Techniques for
Adaptive Material Structural Systems AFOSR-91-0416 DE•

Prof. Craig A. Rogers ....

7 PERFORMING ORGANIZATION NAME(S) AND A00RESSjEI) I PERFORMING ORGANIZA"ION

Center for Intelligent Material Systems and Structures REPORT NuMBtR

Virginia Polytechnic Institute and State Utiversity
840 University City Blvd. AF0 ThT"
Blacksburg, Virginia 24061-0261

0. SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS4ES) 10 SPONSO4ING IMONITOR04O

Air Force Office of Scientific Research RE/ . ... B.R

11.i SUPPLEMENTARY NOTES 'L, ."- . n-

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

13. ABSTRACT (Moximum 20 weor•es
The objective of this research program is to investigate coupled analysis techniques for adaptive material struwcturl
systems. There are two aspects of this research: one is to develop a nonlinear full-field constitutive model for
ferroelectric materials, including piezoelectric and electrostrictive materials; the other is to develop an impedaoce-based
analysis technique for adaptive material systems.

A coupled electro-thermal-mechanical nonlinear constitutive relation for piezoelectric materials has been developed
and verified based on experimental data from the literature. This model uses the polarization fraction as a newly
established internal variable. This internal variable is related to other parameters such as electric field, stress,
frequency, etc., using a hyperbolic tangent function, which accurately describes the nonlinearity, including the
hysteresis of ferroelectric materials. The same approach has also been utilized in the modeling of relaxor ferroelectric
PMN-PT materials. An impedance methodology for the dynamic analysis of adaptive material systems has been
developed. This approach can provide accurate theoretical prediction of the dynamic response of a structure driven
by any type of actuator and yet reflect the physical essence of the actuator/structure interaction. This model has been
experimentally verified.

14. SUBJECT TERMS IS NUMBER OF PAGES

Nonlinear modeling, piezoelectric actuators, impedance, III
dynamics, adaptive materials 16. PRICE CODE

17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 119 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

NSN 7540-01-250-550 Standard From 298 fRev. 2-49)

PI&SCrll~e by ANSI Std ?!'-IS

2 -102



Final Technical Report A

Investigation of Coupled Analysis Techniques for Adaptive Material Structural Systems - "
Grant No. AFOSR-91-0416 DEFI By
Principal Investigator: Prof. Craig A. Rogers Di.
Center for Intelligent Material Systems and Structures
Virginia Polytechnic Institute and State University Avlj+bidty Codes

Blacksburg, Virginia 24061-0261 - .Avii and

Research Objectives1

The objective of this research program is to investigate coupled analysis techniques for adaptive
material structural systems. There are two aspects to this research objective: one is to develop
a nonlinear full-field constitutive model for ferroelectric materials, including piezoelectric and
electrostrictive materials; the other is to develop an impedance-based analysis technique for
adaptive material systems.

Major Technical Achievements:

Nonlinear Modeling of Piezoelectric Ceramics

A coupled electro-thermal-mechanical nonlinear constitutive relation for piezoelectric materials
has been developed and verified based on experimental data from the literature, This model uses
the polarization fraction as a newly established internal variable. This internal variable is related
to other parameters such as electric field, stress, frequency, etc., using a hyperbolic tangent
function, which accurately describes the nonlinearity, including the hysteresis of ferroelectric
materials.

Constitutive Modeling of Relaxor Ferroelectric PMN-PT Materials

The nonlinear constitutive relations for electrostrictive materials have also been investigated.
The same polarization fraction function used in the modeling of piezoelectric materials has also
been utilized here to describe the change in the dielectric and electrostrictive properties of the
electrostricitve materials. The model has considered the influence of grain size, temperature,
frequency, and bias electric field on the sensing and actuation behavior of electrostrictive
materials. This model has been experimentally verified.

Impedance Modeling Technique for Dynamic Analysis of Adaptive Materials

Presently, there are two approaches to the dynamic analysis of adaptive material systems with
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I integrated actuators. One is to use a statically determined force which is determined based on
the stiffness aspect ratio of actuator to structure as a forcing function. The other is the so-called
thermal moment technique. The first approach, the static approach, is not correct at all because
the dynamic force provided by an actuator depends on the structural impedance, not the stiffness,
in the structural dynamics. Therefore, the force provided by an integrated actuator is not a
constant force. The static approach also ignores the mass loading and stiffening of integrated
actuators, which in some cases can have a significant influence on the predicted dynamic
response. The thermal moment approach may more accurately predict the dynamic response,
but it does not represent the physical structural interaction between actuators and structures. The
thermal moment approach does not consider the electric stiffening effect, which may also cause
some error.

Based on the above consideration, an impedance methodology for dynamic analysis of adaptive
material systems has been developed. This approach can provide accurate theoretical prediction
of the dynamic response of a structure driven by any type of actuator and yet reflect the physical
essence of actuator/structure interaction. This model has been experimentally verified.

This final technical report consists of three sections which are papers published or to be
published, as follows:

I . Zhang, X. D. and Rogers, C. A., 1992. *A Macroscopic Phenomenological Formulation
for Coupled Electromechanical Effects in Piezoelectricity," P•cedj/g , Conference on
Recent Advances in Adaptive and Sensory Materials and Their Applications, Blacksburg,
VA, 27-29 April 1992, Technomic Publishing Co., Inc., Lancaster, PA, pp. 183-203.

"* Namboodri, C. G. and Rogers C. A., 'Experimental Investigation of the Electrostrictive
Relaxor Ferroelectric Lead Magnesium Noibate - Lead Titinate," R, 34th SDM
Conference, LaJolla, CA, April 19-21, 1993; in press.

I . Namboodri, C. G. and Rogers C. A., 'Constitutive Modeling of the Electrostrictive
Relaxor Ferroelectric Lead Magnesium Noibate - Lead Titinate," Proming , 34th SDM
Conference, LaJolla, CA, April 19-21, 1993; in press.

"* Liang, C., Sun, F. P., and Rogers C. A., "An Impedance Method for Dynamic Analysis
of Adaptive Material Systems," to be submitted to ASME Journal of Vibration and
Acoustics.

., The first paper deals with the nonlinear modeling of piezoelectric materials, the second and third
paper is about the characterization and constitutive modeling of PMN-PT electrostrictive
materials, and the forth one describes the development of an impedance modeling technique for
the dynamic analysis of adaptive materials.

L
2



I
I
I
I
I

Nonlinear Modeling of Piezoelectric Ceramics

I
I
I
I
I
I
I
I
I
I
I
I

3

I



A MACROSCOPIC PHENOMENOLOGICAL FORMULATION
FOR COUPLED ELECTROMECHANICAL EFFECTS
IN PIEZOELECTRICITY
X. D. Zhang, C. A. Rogers

ABSTRACT

A phenomenological formulation of polarization reversal of piezoelectric materials is
proposed based on the dynamics of domain switching. This formulation provides a
method to describe the hysteresis in piezoelectricity as well as in electromagnetics. It
is shown that a good approach to describe the nonlinear induced strain-field behav-
ior and electromechanical hysteresis in piezoelectricity is by combining the macroscopic
phenomenological aspects with the microscopic material properties. A one-dimensional
thermo-electro-mechanical constitutive model for piezocerarnics which undergo polariza-
tion reversal is presented using a continuum mechanics approach. This model is based
on thermodynamic principles and reflects the essence of the electromechanical behavior
of piezoceramics in a simple form. It is illustrated that this theory can describe the
electromechanical behavior of piezoceramics simply and reasonably well.

NOMENCLATURE

A0  Cross-sectional area of a thin ferroelectric surface
A, Actual area covered by domains at time t
AI Extended area covered by domains at time t
Ce, k, Stress-state factors
CT, kT Temperature factors
C4 ,, k, Frequency factors
Ch, kh Geometric factors
Cd, kd Grain-size factors
d Diameter of grain size
D Electric displacement
E Applied electric field
E0  Amplitude of sinusoidal field
E, Coercive field
EL Local electric field

I
I
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PIEZOELECTRICS

E4, Coefficient of coercive field
f Deformation gradient
h Thickness of specimen
ho Surface-layer thickness of specimen
i Switching current
imax Maximum switching current
k Newly introduced material parameter
V' A parameter similar to k for piezoelectric cases
L Deformation velocity
N Number of aligned dipoles
N, Number of domain nucleation sites
P Instantaneous polarization at time t
P.:1 Spontaneous polarization of ceramics
pint Introduced polarization as internal variable
Pr Reversible polarization
P, Spontaneous polarization

P.c Spontaneous polarization of a single crystal in a certain direction
Q Electrostriction constant
q Internal heat source
qsur Heat flux from the surroundings
S Entropy density
T Temperature
t Time
ts Domain switching time
tmax Domain switching time corresponding to ima,

U Internal energy density
v Sideways wall velocity
vWo Coefficient of sideways wall velocity
X Original coordinate system
z Current coordinate system
Y Young's modulus
a Activation field for sideways wall motion

Correcting coefficient for calculating coercive field
v Rate constant

f, Engineering strain
w Angular frequency of a sinusoidal field

, •Green strain
r Electromechanical tensor
0 Thermoelastic tensor

Relative polarization
p Mass density in current coordinate system

PO Mass density in original coordinate system
a Engineering stress
a, d The second Piola-Rirchhoff stress
12 Polarization reversal tensor
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A Macroscopic Phenomenological FormuLauon for Coupled Elecromechanical Effects in Pi•oeztcgncuy

0 Helmholtz free energy

SUBSCRIPTS AND SUPERSCRIPTS

0 Initial condition
cer Ceramics
d Grain size
h Geometric
int Internal variable
r Reversal
T Temperature
a Stress
W Frequency

INTRODUCTION

The microstructural and electromechanical aspects of piezoelectric ceramics are cur-
rently being studied extensively. An increasing number of practical applications have
been demonstrated and proposed in recent years for piezoelectric ceramics. With the
technological trend for less driving power and miniaturization of devices, piezoelectric
materials are playing a more and more important role in intelligent material systems
and structures.

PS

S•EE

Figure 1: Schematic diagram of a typical hysteresis loop for piezoelectric ceramics
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PiEZOELECTRICS

Ferroelectric ceramics are composed of many crystallites with randomly-distributed po-
lax axis orientations. When a piece of ferroelectric cerarruics is poled by applying a
high electric field during processing, the ceramics become piezoelectric and are called
piezocerarrucs. Lead zirconate titanate (PZT) type ceramics, which have numerous ap-
plications, are the most researched piezoceramics.

Piezoceramics exhibit a linear relationship between the components of the electric-field
vector and the induced strain tensor components. But the linear relationship is only
valid for a low field (usually less than 100 V/mm for commercial PZTs). For large fields,
the nonlinearity and hysteresis appear during the increase and decrease of the field and
influence the accuracy of large induced-strain actuation. The electric field-induced strain
hysteresis may result in a multi-valued output problem, namely, for a given input value,
the output strain can be one of the many values (Anderson and Crawley. 1989).

P, (C,'m 2)
0.35- '1 (CIM2?) o 03= 0 0.3i,1

03= - 53MPa

7.5 5.0
E3(KV/cm)

1 03= 0

2 13=- 0MPa

(a) (b)

Figure 2: Dielectric hysterA,is loop for different biasing compressive stresses (Arndt,
Schmidt and Vogel, 1984) (a) parallel compressive stresses (b) compressive stresses

perpendicular to the field.

In piezoceramics, the relationship between electric displacement D and applied field E
forms a hysteresis loop. A typical hysteresis loop for electric displacement D and ap-
plied field E is shown in Fig. 1. The important parameters which determine the shape
of the hysteresis loop are spontaneous polarization P., remanent polarization P,, and
coercive field E. There is general agreement that the hysteresis loop is a consequence
of the delayed responses of polarization reversal and domain switching. The hysteresis

7



A Macroscopic Phenonwnological Formulalion for Coupled Elecrromechanical Effecr in PAe-oelecrnriry

arises from the energy needed to switch the domain and polarization during each cycle
of the field. Although the hysteresis loop appears to be independent of time, it is known
that each point on the loop is a function of time because the polarization reversal and
domain switching depend not only on material properties and temperatures but also on
time rates and the magnitude of the applied field. More specifically, the polarization P
is a function of applied field E and time of domain switching t: P = f(E, t) (Pulvari
and Kuebler, 1958).

The hysteretic behavior of the piezoceramics is a complex issue, sensitive to applied
stresses and temperature. Figure 2 exhibits the influence of an applied stress field on
the hysteresis loop (Armdt, Schmidt and Vogel, 1984). It is shown that a parallel
compressive stress decreases the spontaneous and remanent polarization as well as the
coercive field, but a compressive stress perpendicular to the field only slightly increases
the coercive field. The temperature is also an important factor which influences the
hysteresis loop. Figure 3 shows that the remanent polarization P, and coercive field Ec
are functions of temperature (Gerthsen and KrUger, 1976). It is shown that the whole
hysteresis loop shrinks with increasing temperature. It is thus revealed that the hystere-
sis loop is a manifestation of the coupled electromechanical behavior of piezocerarmics.

-7
40- 10

6

30 . -

N. 6\
202

10. Ec -1-

R•S -'--'
... .0

-so 6 5106 '150

Temperature (OC)

Figure 3: Remanent polarization P,, coercive field Ec, and ratio P,3/Ec shown as
functions of temperature for PLZT ceramics (Gerthsen and Kruiger, 1976).

In order to exploit piezoceramics for engineering applications and describe the nonlin-
ear behavior of the material, it is necessary to formulate a theoretical model which can
predict the performance of piezoceramics under various conditions. In this paper, a gen-
eral phenomenological formulation for polarization reversal dynamics will be proposed.
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the factors which affect the electromechanical hysteresis will be analyzed. A procedure
for formulating a mathematical model for piezoelectricity will be presented based on
the detailed analyses of domain switching dynamics and on the material properties. A
one-dimensional thermo-electro- mechanical constitutive model will be formulated using
a continuum mechanics approach.

PRELIMINARY CONSIDERATIONS

Much work has been done on single crystals from a microscopic viewpoint. Among
these investigations, the thermodynamic theory of single crystals has been intensively
researched. Devonshire (1949) put forward a phenomenological theory of ferroelectricity
which proposes an expression of the free energy in terms of polarization P, temperature
T and stress a, namely, G = f(P, o, T). The relationships between the parameters of
electric field, polarization, and temperature can be inferred from this theory. Devon-
shire's work has been extended by numerous studies andc is qualitatively in agreement
with experimental results. Even in recent years, this theory has been used in thermody-
namic studies of PbTi0 3 single crystals (Haun et al., 1987; Rossetti et al., 1990). This
theory has also been extended to model the dielectric properties of BaTiO 3 polycrystals
(Shaikh and Vest, 1989).

Another aspect of the microscopic studies of ferroelectricity is the domain switching pro-
cess and polarization reversal (Pulvari and Kuebler, 1958). Through either the direct
observation of domain wall motion during polarization reversal or measurement of the
switching transient under pulsing conditions, the domain switching processes have been
intensively studied in ferroelectric materials. It has been shown that nucleation of do-
mains and domain wall motion are the responsible mechanisms for the domain switching
process. The domain switching time can be expressed as a function of applied field and
the associated material properties. But, the mechanism of the domain configuration
and the switching process are still not well understood. On the other hand, most of the
practical ferroelectric materials are in polycrystalline ceramic form and more parame-
ters, such as grain boundary and intergranular stresses will complicate the microscopic
formulation. In addition, the single crystal properties must be averaged over the crys-
talline orientations. Therefore, it is difficult at the present time to propose a satisfactory
theory of ferroelectrics from a microscopic viewpoint.

It is significant that a macroscopic theory of ferroelectric materials can be formulated
in terms of external parameters such as applied electric field, stress state, temperature,
dielectric properties and geometric configurations. If such a macroscopic theory can be
developed, it will be very easy to use in the prediction of piezoelectric behavior. It is
noted that formulation of such a theory with acceptable precision would still be a tremen-
dous task. From a physical viewpoint, Chen and co-workers (Chen and Peercy, 1979;
Chen and Montgomery, 1980) proposed a semi-macroscopic phenomenological theory
for the hysteresis and butterfly loops in ferroelectric materials based on the relationship
between the domain switching under an external electric field and the number of dipoles
aligned in the direction of the field. This theory suggested that the mechanical stress

9
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a and electric displacement D are functions of the mechanical strain E, the absolute
temperature T, the external electric field E, and the number of aligned dipoles N:

{ = &(f, T, E, N)
D = D(,,T,E,N). (1)

It is noted that the N is the effective number of aligned dipoles and is determined by
the projection of the dipole moments to E. The number of aligned dipoles N obeys the
rate law:

NV = h(,,T,E,N). (2)

This theory represents a new method to characterize the behavior of the ferroelectric
materials. It is mentioned that the parameter N has only a pure physical sense and is
microscopic. The parameter N cannot match the real polycrystal material where dipoles
are arranged in randomly-distributed domains.

Based on the first and second law of thermodynamics, Bassiouny and co-workers
(Bassiouny, Ghaleb and Maugin, 1988, 1989) developed a complete phenomenological
theory for coupled electromechanical hysteresis effects. Two sets of state variables are
used to describe the coupled electromechanical process. One set is the normal state
variable such as temperature, the total strain c and the total polarization. The second
type of state variable refers to internal variables such as plastic strain and residual po-
larization by which actual state depends also on the past history. In Bassiouny's theory,
an introduced electric polarization p"n is chosen as an internal variable. The free energy
per unit volume can be expressed as a function of total strain e, reversible polarization
P, internal variable Pint and temperature T:

t) = )(f, pr, pin", T), (3)

where P" is the difference between total electric polarization and residual polarization.
T denotes the absolute temperature measured from a reference temperature, To. After
using the Clausius-Duhem inequality and decomposition of the dissipation inequality, a
phenomenological theory for coupled electromechanical hysteresis is proposed by anal-
ogy of Drucker's inequality in plasticity and the assumption of loading functions. This
theory provides a very good method of treating electromechanical hysteresis in a contin-
uous media. It rteems that the theory is purely a mathematical issue because too many
assumptions and approximations are used. For example, the coercive field is assumed
to be a constant in the loading functions and the material coefficients arc introduced by
expanding the free energy function 4) in terms of the independent variables.

There are two approaches to modeling a constitutive relation for a material. One is
the macroscopic phenomenological method in which a few state variables are used to de-
scribe the material behavior in an analogous sense. The other is the microscopic physical
method which derives the constitutive relation from fundamental physi.- ' :oncepts. The
phenomenological approach is often used in engineering practice, but can rarely provide
the physical essence of the material behavior. The microscopic method can explain the
experimental phenomena physically, but is far from quantitative. Therefore, a combina-
tion of the two approaches will perhaps give a better prediction of the material behavior.

10
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In modeling the coupled electromechanical behavior in piezoelectricity, a macroscopic
phenomenological approach based on thermodynamics will yield a reasonable macro-
scopic theory which can describe the material behavior both phenomenologically and
physically. This approach will consider the characteristics of the material properties and
the domain dynamics.

DOMAIN DYNAMICS

CONCEPTS OF DOMAINS AND DOMAIN DYNAMICS

In a single crystal or a crystailite, the dipoles are usually not polarized uniformly in
one direction. Single crystals or crystaiites are composed of numerous domains which
contain large numbers of dipoles all aligned in the same direction. The ýomains are
separated by domain walls which are the loci of the points where the dipole orientation
suddenly changes (Fatuzzo and Merz, 1967). Two kinds of domain walls are formed in
one crystallite: 900 and 1800 in tetragonal symmetry or 710/1090 and 1800 in rhombo-
hedral symmetry. The walls which separate antiparalel domains are called 1800 domain
walls and those which separate dipoles at right angles to each other are called 90' walls.
Figure 4 is a graphical representation of 1800 and 900 domains in barium titanate.

180* boundary

90gboundary

Figure 4: Schematic diagram of 1800 and 900 domains in tetragonal symmetry.

The static configurations have been studied using several techniques such as induced
strain, etching, powder, TEM and SEM. Domain reorientation can be caused by either
an electric field or mechanical stress, but domain processes are influenced differently. In
one crystallite, both 900 and 1800 domain reorientations in tetragonal symmetry or both
710/1090 and 1800 domain reorientations in rhombohedral symmetry can occur under
a high d.c. electric field. Mechanical stress can only cause 900 domain reorientation in
tetragonal symmetry or 710/1090 domain process in rhombohedral symmetry because
only these non-1800 domain processes incur the mechanical strain or dimensional change
of the specimen.

11



The detailed dynamics of changes in dowaui configuration undef aln applIC field Or
Sstress are com plex. W hen a sing!e crystal or a crystailhte is uuder ,ri applied electr!(

field, the new domains are first nucleated and formed inalnly at the surface 1 hey ,
forward through the thckness of the crystal, and then expand sidewaýý Laldescr
until all the region is occupied by the ne'ly-formed dotnarn! It h•z bime•n ih.wo: h4,A
the sideways growth of doiains plays an inportant role in the dor-a-• ,pruhj4 ,rtcss
The sideways wall velocity at low electric field may be exprtessed A

1Y = C,"exp - .

where a is the activat.on field for ijdewaysi wall motion a•nd ,-, s a ,t - As a
function of specimen thickness A and temperature, the value of ( ki :ea' e ,
increasing ternperatsire. The relationsinp between actvat•oln fi,'d tj and . a.
be obtained as follows:

! - $~

The above elations are valid for h > A(, where ha is the surface Ia-e.rhaknes wý;ere

the domain switching behavior is independent of the thicknr i'lhe J orc;'le firld ca:. be
explained physically as a field where the reversed domains ,7o•,.or rxacti,, oneIai of .. he
volume of the sample. The coercive ield ran also be expressed as a ":ot of sime
thickness h in a similar way as activation field ci.

E, = E i

I where E, is a constant.

U BASIC THEORIES OF POLARIZATION REVERSAL DYNAMIC'S

Electrical techniques are widely used for studying the poiar:zatior. r"versal dynarn(cs
The Miller-Sa. -ge technique of analyzing the electric behavior of fer. oelec,.c materlals
under square pulses is the most reliabie and popular method used to study the domain
wall motion and domain switching time t, iFatuzzo and Merz. I967., The important
parameters which can be measured ,xperimentally are the switching time. the maximum
switching current z",, and the normalized shape of the pulse. The switching time t,
is basically defined as the time neressarv to reverse a certain fraction ie.g.. 957( of
the total polariztion. In practice, t, is usually defined as the time necessary for the
switching current i to drop to a certain fraction of its maximum value Inz The terms f,
and ',,, are related to each other with spontaneous polarization. P,. i e.. 2P, = 1,,,tf.
where f is a shape factor which depends on the shape of the switching curv-, fgererallv
ranges from 0.43 to 1.0). Merz (1954) found experimentally that both t, and ?,, in
BaTiO3 change with the electric field E following an exponential law at low electric field
(< 15KV/cm):

, r = 1 exp0 -- 7
t, = to exp").

where it and to are constants. Stadler (19.58) extended Merz's measurements to the
high-field range (10 - 100KV/cm) and fo-Ind that the switching time t, follows a power

12
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law of the type: t, = aE-', where a and b are constants. This coincides with the fact
that for high electric field, only the first power term of the expanded exponential law of
Eq. (7) remains significant.

Numerous theories for polarization reversal dynamics have been proposed either empir-
ically or theoretically. Based on Merz's (1954) experimental results, Landauer, Young
and Drougard (1956) proposed a polarization theory for BaTtO3. The switching rate.
dP/dt, varies with exp (-')) as follows:

dP = V(P. -P) exp(--
dt T (tyJ

where E(t) is the instantaneous field, v is a rate constant which is independent of field
and polarization, and, (P, - P) represents the fact that the probability of forming new
domains is proportional to the residual volume of the original polarization. If the peak
voltage value of the sine wave is twice the coercive voltage or larger, one can take E(t)
to be Et and integrate Eq. (8):

P VtO
I - 2exp[I-EF(a/E)] (9)P.

where F(u) = dx- f•"dzr, and can be evaluated by mathematical series. The above
equation exhibits the time dependence of the instantaneous polarization during the
switching process and defines the shape of the hysteresis loop.

Pulvari and Kuebler (1958) developed a phenomenological theory of polarization reversal
in BaTiO3 single crystals based on the electric transient response under pulsed voltage.
From the experimental results, it has been shown that the current transient can be
expressed as i = i1,.f(j-' ) and f' Idt =constant, where t,,7 r is the domain switching
time corresponding to I,,,. it has also bean demonstrated experimentally that t,,,,
can be represented as a function of electric field: • = vEexp(-a/E). a and v have
the same physical meaning as introduced above. A approximation function, f, which
satisfies the physical principle of the transient response of the pulsed voltage is assumed
as follows: t t t

f()= C2(-exp -,)] (10)
f(t a .(t a (t-," 1.

According to the stated assumption and experimental evidence, one can obtain the
polarization switching dynamics as follows:

P I2(vtEe-|)f
. = 1 - 2exp[(E ). (11)

It has been demonstrated that the dynamic expression of Eq. (11) is in agreement with
some experimental results.

In addition to Landauer's theory and Pulvari's model, which are empirical and based
on experimental results, theoretical models have a:,o been proposed to account for the

13
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polarization reversal dynamics. Avrami (1939, 1940, 1941) has demonstrated that the

extended area A,,(t) of a thin ferroelectric material can be related to the actual area
Ac(t) which is covered by the domains at time t:

Ao - A: (t) = Ao exp[-( A (12)

I where Ao represents the cross-sectional area of the thin ferroelectric surface. A, =

E', a,(t), and a,(t) is the area of the ith domain at time t while the influence of the
other (n - 1) domains to the zth domain is neglected. For the sake of simplicity, a
fixed number of nucleation sites N, and the same extended area a(t) for every domain
are assumed for a unit surface area. In a thin layer of ferroelectric material, the total

extended area per unit area of the electrode (in the same sense as A,;(t) in Eq. (12)
if Ac0 = 1 is assumed) for the positive half-period of a sinusoidal electric field can be
expressed as (Janta, 1971):

A,.(t) = N'a(t) = 2Nm[h 0 + -2g(wt, )], (13)
W a

where g(wt, •-E) = fo" exp )dx. The velocity of the (apparent) sideways motion
of the domain walls is assumed, as in Eq. (4). w is the angular frequency of the electric
field, v,, represents a constant which has the same meaning as in Eq. (4), h0 denotes
the initial domain half-width, and E0 is the amplitude of the sinusoidal field. Setting
Ao = 1 in Eq. (4), one can obtain the expression for mutual overlap of growing domains
per unit cross-sectional area as A,(t) = 1 - exp t-A,,(t)i. The relative polarization can

be expressed in terms of Ae(t) as:

P(t) = 2A,(t)- 1 = 1 - 2exp [-A,,(t)]. (14)P,

For steady-state hysteresis loops, one may use the symmetry condition P(ir) = -P(0)

for a sinusoidal field to obtain the initial value ho. Combination of Eq. (13) and Eq.
(14) gives:

S= 1 + [1 + tanh (N 1--- g(r, exp[-2N, g(wt, )]. (15)

It should be noted that the above simplified theory is based on the sideways expansion of
randomly-distributed 1800 domains which are assumed to have the same size and form.
Nucleation and forward wall motion are neglected. It has been shown that in the case of

cylindrical domains, an expression similar to Eq. (15) may be obtained (Jnata, 1971).

It should be noted that the above polarization reversal theories are only valid for single
crystals. For polycrystals or ceramics, the situation may be quite different.

Polycrystalline ceramics are more important than single crystals because it is easier

to maintain quality control with them and they are simple and inexpensive to produce.

However, their domain dynamics and domain configuration are more complex than those

for single crystals. The grain size and the grain boundary properties are very important

14



PIEZOELECTRICS

factors which influence the domain dynamics. Figure 5 represents spontaneous polariza-
tion of BaTi0 3 as a function of grain size (Shaikh and Vest, 1989). The spontaneous
polarization increases with the increase in grain size because as grain size decreases, the
grain boundary area (an amorphous state) increases where ferroelectricity does not exist.
The spontaneous polarization of large-grain polycrystals of BaTiO3 in an unpolarized
state can be calculated from the single-crystal values as follows (Arlt and Sasko, 1980):

ue P", CosO aCos ddp,(6

where P. = , and P., is the spontaneous polarization of the single-crystal BaT:03
along the < 001 > direction. Integrating the above equation yields P.. = 0.19P,,. For
poled piezoceramics, the spontaneous polarization is larger than 0.19P•.
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Figure 5: Variation of spontaneous polarization of BaTi0 3 ceramics at 700C with
grain size (Shaikh and Vest, 1989).

PHENOMENOLOGICAL FORMULATION OF THE POLARIZATION REVERSAL
DYNAMICS FOR CERAMICS

As previously discussed, the mechanism and process of polarization reversal are still
not well understood. The basic theories of polarization reversal introduced here are only
approximate descriptions of the hysteresis loop. Therefore, it is very difficult to formulate
a dynamic theory of polarization reversal by its mechanism or process. Phenomenological
formulation may provide an alternative method to describe and predict the hysteresis
loop in a simple form. As we know, the instantaneous polarization (P) or relativeIpolarization (P/P.) is an exponential function of the applied field. It is postulated that
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an exponential function of electric field or a combination of exponential functions may

provide a better formulation. If a typical hysteresis loop is represented as p; = f(E),
where E may be a function of time, the basic characteristics of the hysteresis loop may
be expressed as at E = ±E,, a = 0, because two points (±E .0) are the points

of inflection of the hysteresis loop, at P > 0, < 0 and at P < 0, 24 > 0. It is
fortunate that the hyperbolic tangent function p. tanh k(E ± Ec) can match all the
characteristics of the hysteresis loop. It is therefore logical that a phenomenological
formulation for a steady-state loop may be proposed as follows:

I r~ -=tanh k(E - Eo) .>

I P =tanh k'(E + E,) d < 0,(17)

where E. represents the amplitude of the coercive field. k and k' are newly in'.roduced

material parameters. For the case of general ferroelectric ceramics in which the do-
mains are randomly distributed, k is equal to k'. For piezoelectric ceramics, there is
a difference between the polarization along the poling direction and the polarization
antiparallel to the poling direction; different k and k' values are suitable for this case.
It should be noted that the remanent polarization P, can be obtained easily from Eq.
(17) as P, = P, tanh k'E,. The virgin curve may be expressed as P = P, tanh kE,
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Figure 6: Typical hysteresis loops calculated from the proposed phenomenological
polarization reversal model.

The shape of the steady-state hysteresis loop can be totally predicted and described by

the two parameters k and E, through Eq. (17). Figure 6 is an illustration of typical
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I hysteresis loops calculated from Eq. (17) for different k and E, values. It is demonstrated
that different k values give different curvatures and the amplitude of the coercive field,
E,, determines the horizontal size of the loop. It is necessary that the material parameter
k and the coercive field E. could be determined either theoretically or experimentally.
As discussed above, the coercive field Ec is a function of stress state, temperature,
frequency of the electric field, geometrical shape, and material properties such as grain
size. Therefore the coercive field Ec can be represented mathematically in terms of
external variables and material properties:

IEc = Et(or,T, ,h,d), (18)

where h represents the thickness of the specimen as in Eq. (6) and d denotes the
diameter of the grain size. It seems very difficult at the current time to evaluate E,
theoretically. Gerthsen and Krfiger (1976) calculated the coercive field assuming that
polarization reversal is basically determined by 90* reorientation. This requires P,3/E,
to be constant (as is shown in Fig. 3 for P?/E•):

Er = 8yQ2 po3, (19)

where , is a correcting coefficient considering the different domain alignments in adjacent
grains, Y is the elastic modulus, Q represents the electrostriction constant and P, is the
spontaneous polarization. Because P5 is also a complicated function of external variables
and material properties, E, still cannot be determined except when Ps is known. If it is
assumed that the effect of external variable and material properties to the coercive field
Er are independent of each other, E, may be obtained analogous to the determination

of fatigue strength (Shigley and Mitchell, 1983):

Ec = CuCTCChCdEco, (20)

where C•, CT, Ct,, Ch and Cd represent stress-state factor, temperature factor, frequency
factor, geometric factor and grain size factor for coercive field, respectively. Eco denotes a
coercive field at a reference state. By experimental parametric study, all the coefficients

may be determined. The material parameter k may also be expressed as a function of
external variables and material properties:

k = k(a,T,w,h,d), (21)

and analogous to the arguments for the coercive field, the material parameter k may be
obtained as:

k = k,,kTkkhkdko, (22)

where k,, kT, ko,, kh and kd have similar meanings as the same coefficients of coercive
field. ko denotes a specific k value at a reference state. All the coefficients of k may
also be determined by experimental parametric study as in the determination of fatigue

strength.

From an engineering viewpoint, the above polarization reversal phenomenology is sig-

nificant due to its simplicity. This formulation does provide an approach to describe
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the hysteresis loop in a sense similar to Paris's law predicting the crack-propagation
behavior of fatigue. On one hand, there is no polarization reversal dynamic theory in
existence which can describe the hysteresis loop in ceramics because of the complicated
essence of the problem and because too many factors influence the hysteresis of ceramics.
Although Chen's semi-microscopic theory and Bassiouny's thermodynamic theory may
reveal some features of domain switching in ceramics, they are still in the mathematical
stage and are too complicated to apply to engineering. On the other hand, the above
phenomenological dynamic theory may be used directly in engineering with acceptable
precision. With the development of ferroelectric memory appliances, k and Ec may be
used as the criteria to evaluate whether or not the memory property of ferroelectric
ceramics or thin films is sufficient. In these cases, the stress components are zero, and
the frequency dependence of k and Ec at low-range frequencies is negligible (as shown
in Fig. 7 for E,). Therefore, k and E, are material constants which depend only on
material properties. In addition, the above polarization reversal phenomenology may be
used to describe the electromagnetic hysteresis loops.

IE
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Figure 7: The frequency dependence of coercive field Ec for PLZT ceramics (Gerthsen
and Kruger, 1976).

THERMODYNAMIC FORMULATION FOR COUPLED ELECTROME-
CHANICAL EFFECTS IN PIEZOELECTRICITY

As discussed above, formulation of a microscopic theory for piezoceramics is difficult
due to the complexity of the problem. From a material viewpoint, the factors which in-
fluence the nonlinearity of piezoceramics are composition, ceramic structure, grain size,
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internal defects and internal stress. From a mechanical aspect, applied stress, temper-
ature and applied electric field may affect the nonlinear behavior of piezocerarnics. In
Chen's semi-microscopic theory, the number of aligned dipoles N cannot describe the
polycrystal material in an engineering sense where dipoles are arranged in randomly-
distributed domains. Bassiouny's theory does provide a reasonable approach to predict
the electromechanical hysteresis in a continuous media. But this theory is still in a purely
mathematical stage and is not easy to use in engineering applications. In this section, a
one-dimensional macroscopic phenomenological formulation will be proposed based on
the first and second laws of thermodynamics using a continuum mechanics approach. In
this study, the material under consideration is polycrystal, and the polarization reversal
and electromechanical processes may be considered as processes where both polarization
inertia and gradients are neglected.

Analogous to Tanaka's model of SMA materials, which are subjected to thermoelas-
tic martensitic transformation or its reverse transformation (Tanaka, 1986), a one-
dimensional ceramic material is considered which is undergoing either polarization or
reverse polarization. The energy balance equation and Clausius-Duhern inequality in
the current x-coordinate may be expressed as:

p•)" - aL + ELb + 21=-p 0
ax+-pq= (23)Pý- PI, +• -8X? ý!>0,

where p is the density in the current deformed configuration, L is the deformation
velocity, and a, U and qo,., denote the Cauchy stress, the internal energy density and
the heat flux from the surroundings, respectively. E1, is the local electric field at a
given point within the material and D is the electric displacement. The superposed
dot denotes a material derivative. T, q and S represent the temperature, internal heat
source, and entropy density, respectively. According to Tanaka's definition, the above
energy balance equation and Clausius-Duhem inequality may be written in the original
configuration state, X, as:

po& - & + a Erb + f-2 k&%x - Poq 0
P a0 (24)

po po +f f Yfl T >0,

where po is the mass density with reference to the original configuration, f is the defor-
mation gradient, ' is defined as the second Piola-Kirchhoff stress, = is
the Green strain.

The thermomechanical state of a ceramic material at a given point at time t is completely
determined by a set of state variables. It is considered (Bassiouny, Ghaleb and Maugin,
1988) that the temperature T, the total strain e and the instantaneous polarization P
define the coupled electromechanical behavior for a reversible process. In order to use
the proposed phenomenological pofarization reversal formulation of Eq. (17), we assume
that the set of state variables which describe the coupled electromechanical process of
piezocerarnics are total strain f, temperature T, relative polarization P (which will be
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denoted by ý), and external electric field E. It should be noted that except at the
external surface of the specimen, the external electric field does not act on a given point
within the material. It may be considered as a pseudo-state variable whose effect on a
given point within the material is through a so-called local electric field EL and relative
polarization ý which determines the polarization state of a given point. Such a state
variable is assumed to reveal the implied relationship between the stress state and an
applied electric field E in an explicit form. The assumed general state variable may be
expressed as:

A S (ý, T, , E). (25)

The Helmholtz free energy, which is the driving force of the electromechanical process,
is a function of the state variable A and is given by:

O(A) = U - TS. (26)

Considering Eq. (25) and taking derivatives of Eq. (26) yields:

at. o€. as. af.
4=- T+-+-T + -EE= U -TS -ST. (27)

Substituting Eq. (27) and the energy balance equation (Eq. (24)') into the Clausius-
Duhem inequality (Eq.(24) 2 ) and expressing every term in the original configuration X
gives:

8) at - 8) 1t -'q 1 (28)
-)t (S + -. ")T -ELD - -F > 0. (28)iPo -• 8)t- -81-2 - p our

From the thermodynamics of continuous media, the coefficients of f and T should vanish.
Therefore the inequality of Eq. (28) yields the electromechanical constitutive equation:

=p -9- =&(i, T, , E). (29)

Taking the derivative of the above equation, the rate form of the electromechanical
constitutive equation may be given as:

a = Y- + OT + 1ý + rE, (30)

where Y, E, fl and r represent Young's modulus, thermoelastic tensor, polarization
reversal tensor and electromechanical tensor, respectively. These material properties so
derived may be expressed in terms of Helmholtz free energy:

y= O8 2 4

E)=po 8-
a2 ,
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Eq. (30) and (31) provide a simple coupled electromechanical model which describe the
stress-strain relation in an explicit form. However, a detailed experimental procedure is
needed to determine the material constants which are defined in Eq. (31). It should be
noted that the 'one-dimensional' is only required for the induced strain and the external
applied stress but not for the applied field.

A SPECIAL CASE

In an isothermal process, where there is no temperature change, the T term in Eq. (30)
will vanish (T = 0). Therefore, Eq. (30) may be rewritten as:

a = Ye + fl2 + rE. (32)

For a low-frequency case where the stress-strain process may be considered as quasi-
static, the stress &, strain ý and relative polarization f can be envisioned as functionals
of the electric field E where the independent variable is time t. The time derivatives
may be given as: a =8 tE, f= - and 2 = . Substituting into Eq. (32) one
may obtain:

may obta : = Y - + - + r. (33)
j 8E 8E
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Figure 8: Comparison of experimental data (Anderson and Crawley, 1989) and

theoretical prediction.

Integrating every term of the above equation over E gives:

a - ao = Y(Z - ýo) + nl(4 - ýo) + (E - Eo) (34)
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where &0, ý0, ýo and Ea represent initial stress, strain, relative polarization and initial
electric field, respectively. The physical meaning of the above equation is very clear.
The first two terms represent a basic mechanical stress-strain relation. The third term
denotes the contribution of the polarization reversal to the stress-strain relation of the
material. The fourth term gives the linear reverse piezoelectric effect. For a stress-
free case with zero initial conditions, if the proposed phenomenological formulation of
polarization reversal for a virgin curve = tanh kE) is used, the above equation may
be simplified as:

6 Q tanh kE - -E. (35)
y y

The above equation may provide a nonlinear relationship between the induced strain
and the applied field. Due to lack of experimental data, the material constants required
by the model are still not available and we cannot verify the above model at the current
time. However, the validation of our model may be illustrated indirectly. As shown in
Figure 8, the nonlinear field-strain experimental data, E3 vs. Ei (Anderson and Crawley,
1989), can be matched 'perfectly' with the above equation through curve-fit techniques.
The expression for the theoretical curve in Fig. 8 is e = 0.665E - 206 tanh 0.002E (E is
in V/mm and f is in microstrain). In principle, any experimental curve can be matched
by regression analysis but may not match the physical principle. In our case, the theo-
retical expression matches both the experimental data and the physical principle of the
nonlinearity.

CONCLUDING REMARKS

A general phenomenological formulation of polarization reversal is proposed in a sim-
ple form. This formulation provides a very good method to describe the hysteresis in
piezoelectricity as well as in electromagnetics. With the development of ferroelectric
memory devices, the material parameters k and E, may be used as criteria to evaluate
the memory quality of the materials. A good approach to describe the nonlinear induced
strain-field behavior and electromechanical hysteresis in piezoelectricity is by combin-
ing a macroscopic phenomenological method with microscopic material properties. A
one-dimensional thermo-electro-mechanical constitutive model for piezoceramics which
undergo polarization reversal is presented using a continuum mechanics approach. This
model is based on the basic laws of thermodynamics and reflects the essence of the
electromechanical behavior of piezoceramics in a simple form. It is significant that the
proposed model provides an explicit form of the stress-strain relation which may facili-
tate engineering design of piezoelectric actuators. It is illustrated that this theory can
describe the electromechanical behavior of piezoceramics simply and reasonably well. It
should be noted that material constants for the proposed model are not yet determined
due to lack of experimental data at the present time.
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Abstract

Fundamental to the design of intelligeit matenra systems and str'ctures are the realiza•ion of
attributes of the constitutive materials-the sensorn and actuators-and the abiht;' to model the
characteristics of these transducers. In this paper, electromechanical behaviors of the
electrostrictive relaxor ferroelectric lead magnesium niobate-lead tunate (PMN-PT) are
experimentally investigated. The dependencies of PMN-PT electrom" :hanical trarnsducton on
temperature and frequency, characteristics of relaxor ferroelectcs. and on applied d~recx-current
electric field, an at,_-ibute of electrostrictors which enables tunable trnsduction sensaivitzes. are
examined with respect to electrical, sensing, and actuation proper.,es. Results from these
experiments are compared with phenomenological models explained in another paper. The
objectives for these experiments are to urderstand the behaviors of PMN-PT sensors and
actuators with respect to temperature, frequency, and bias field.

Nomenclature

do Electrostrictive piezoelectric strain coefficient (m/V)
E Electric field, vector (Vim)
EAC Dynamic (AC) contribution to electric field (Vim)
Eoc Static (DC) contribution to electric field (V/m)
g 41 Electrostrictive piezoelectric voltage coefficient (V-m°'N)
P Polarization (C/m)
Q Electrostrictive coefficients (transverse, Q13] (m'/C 2)
s Applied mechanical strain (m/m)
T Temperature (0C, K)
T,,. Curie temperature for maximum permittivity with relaxor ferroelectrics ('C, K)
Y Young's modulus of elasticity (iN/mr)

Iei4 " Relative electric permittivity
ept Relative electric permittivity loss

,,,•, ,oK= Maximum relative permittivity of ferroelectrics

26



!

Electric permittivity of free space, 8.85x10-" F/m
K Dielectric constant, same as relative electric permittivity
A Free-induced strain (m/m)
a Applied mechanical stress (N/m2)
x Relative dielectric susceptibility

X=,Maxium relative susceptibility of ferroelectrics
Xo Frequency (Hz)

Introduction

In the past decade, interest in electroceramic transducers has been renewed by the conceptual
advent of intelligent material systems and structures. Intelligent, or smart, material systems and
structures are designed, via control capabilities and architected mechanics, to autonomously and
judiciously sense ard respond to their environments using transducer materials, i.e., sensors andactuators. Much progress has been made in the development of applications with electroceramic
transducers and their integration into these systems; consequently, the need for appropriate
mechanical characterization and useful, quantitative constitutive modeling for design applicationshas ar:,sen.

Although electronic ceramics comprise a tremendous variety of sensors and actuators, the most
common and pertinent to intelligent material systems and structures are those containing an
electromechanical relationship. Application of these electroceramics are found in the areas of
mechanical transduction, vibration, and acoustics. Piezoelectric and electrostrictive materials
are used almost exclusively in these fields. Lead magnesium niobate doped with lead titinate
(Pb1Mgi 3Nb2]O 3-PbTiO 3, or PMN-PT) is a ceramic which exhibits a strong electrostrictive
effect. Electrostriction involves a nonlinear electromechanical coupling for which the material
develops a strain proportional to the square of the polarization. Free-induced strains in PMN-PT
as high as 4-5x10- have been achieved for realizable fields on the order of 10 V/mr (Ealey and
Davis, 1990). For comparison, a piezoceramic develops strain proportional to the electric-field-
induced polarization. Strain levels for the best piezoelectrics are comparable to the best
electrostrictors (Damjanovic and Newnham, 1992). When compared with a typical piezoceramic
such as lead zirconate titinate (Pb[ZrTi]0 3, or PZT), PMN-PT distinguishes itself not only in
the nonlinearity of its coupling, through which tunable transduction sensitivities can be achieved,
but also in its electromechanical and thermal stability, its negligible dielectric aging, its
repeatability under cyclic driving fields, and its dynamic response (Cieminski and Beige, 1991;
Cross et al., 1980).

A description of the advantages of PMN-PT, however, would be remiss without relating its
disadvantages. Because the response of PMN-PT is nonlinear, quadratic with respect to
polarization, the useful actuator authority for AC applications is limited. Furthermore, the
electromechanical response is highly frequency-dependent and is restricted to a temperature
range in which the dielectric permittivity is large, namely the relaxor phase transition range.
Finally, deformation for low applied electric fields is small (quadratic behavior), so that
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electrostrictors such as PMN-PT somewhat exacerbate the desire for low-voltage devices.

Although much research into the constitutive behavior of PMN-PT has been reported, emphasis
has been placed on material processing and dielectric behavior, due to attractive high permittivity
values. The bridge of understanding from processing, composition, and dielectric properties to

the mechanical domain has been qualitatively described and incompletely formulated. The
electromechanical response of PMN-PT requires thorough investigation from an engineering
perspective and sound, practical constitutive models for use in design and integration into
intelligent material systems and structures. The objectives of this research are to characterize
the electromechanical behaviors of PMN-PT, with an emphasis on engineering design utility.
Investigations of the electrostrictive properties of PMN-PT have been performed with respect
to temperature, frequency, and DC electric field. Experimentation with this electroceramic has
included macroscopic mechanical studies of the material as both a sensor and an actuator and
investigations into its dielectric behavior.

Electrostrictive Phenomenology

According to Landau-Ginzburg-Devonshire (LGD) thermodynamic formalism, relating dielectric
and elastic properties of solids, electrostriction arises from free energy terms (Newnham, 1991;
Namboodri and Rogers, 1992a). Three different but equivalent effects arise when the three
possible partial derivatives of the electrostrictive free energy terms are taken in different orders.
Integration of these relations yields constitutive equations for electrostrictive behavior.

With the so-called 'direct effect,' free-induced strain varies with the square of polarization:

Aj = Q~P,,P+dIP+A . (1)

Physically, the piezoelectric coefficient in eq. (1) relates any effects from spontaneous
polarization of an electrostrictor. One converse effect describes the electric field developed
when an electroct-. ;s stressed,

E1 =(QvkP +g +E1". (2)

The second converse electrostrictive effect involves the linear stress dependence of susceptibility.

Equations (1) and (2) represent the electrostrictive actuation and sensing constitutive relations.
For practical engineering design and implementation, the polarization term prevalent in these
equations does not possess the parametric convenience of applied electric field. Conventionally,
linear dielectric behavior is assumed for a parallel-plate capacitor, where induced polarization
is described as the product of dielectric susceptibility and electric field:
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Pj xEj=(e- lYE> (3)

Therefore, dielectric properties are vital to the electrostrictive behaviors of eqs. (1) and (2).

Experimental Design and Procedure

PMN-PT Sp•cim en ,HBtor
To associate experiments herein described with results in the literature, the processing history
of PMN-PT samples must first be considered. Specimens of the solid solution
0.9Pb[Mg 1/3NbV]O 3-0. lPbTiO3 (PMN-PT) were manufactured at AVX Corporation using mixed
oxides calcined through the two-stage procedure introduced by Swartz et al. (1984). The
calcined mixture was milled in a slurry and tape cast. Platinum electrodes were screen printed
onto the green cast, and the composite was fired. The specimens were formed in the shape of
plates, having dimensions approximately 0.0572 m x 0.0127 m x 0.00043 m; though, there was
some curvature observed for most of the plates. Some of these plates were tested as prepared,
and some were scribed and fractured to produce smaller specimens. The edges of fractured
pieces were sanded with emery paper and cleaned with acetone to ensure there was no short
between electrodes.

Actuation Property Experiments
Actuation with PMN-PT involves the direct electrostrictive effect, described by the derivation
of LGD phenomenology in eq. (1). In this equation, free-induced strain is related to applied
polarization. However, polarization is not a practical measure; whereas, the applied electric
field which induces polarization is. Experimental studies of actuation are thus conducted with
respect to applied field, and dielectric studies described later are correlated with actuation
results, in order to separate and quantify the electrostrictive coefficient of eq. (1).

I As indicated in eq. (1), the electrostrictive coefficient is a tensor quantity. Because of symmetry
of the cubic perovskite PMN-PT and planar isotropy with respect to polarization direction, this
tensor can be described by only two quantities for a unidirectionally applied electric field.
Electric field applied in the direction of one material Cartesian coordinate will result in strain
both parallel and transverse to the direction of induced polarization (applied field). Bi-
directional transverse strain is uniform because of planar isotropy of dielectric and
electrostrictive properties. In these studies, only transverse behaviors were investigated.

As illustrated in Fig. 1, transverse electromechanical properties of PMN-PT were determined
by monitoring both the electric field applied across parallel-plate electrodes and the
corresponding free-induced strain, measured by a strain gage bonded to the monomorph surface.
It is important to note that the strain gage was bonded to the grounded electrode of the specimen,
to avoid capacitive feed-through of voltage to strain measurements. Strain was measured to
within ±+ 1 m/m.
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Two sets of experimental apparatus, illustrated in Fig. 2, were utilized for two types of
measurement, static and dynamic. As shown in Fig. 2 (a), static measurements were obtained
by stepping DC voltage applied to PMN-PT specimens up and down with a potentiometer and
by measuring the steady-state stain response at each step. Frequency response measurements
were acquired through digital conversion of voltage and strain signals, as in Fig. 2 (b), and Fast
(Discrete) Fourier Transform spectral analysis of digitized data. High levels of applied voltage
were resistively divided for proportional measurement of electric field with a data acquisition
board, which is limited to ± 10 V inputs. The input impedance of the voltage divider was
carefully selected with respect to the capacitance of PMN-PT specimens to ensure that electrical
dynamics were unaffected. AC voltage was measured to an accuracy of ±5 mV for a ± 10 V
range, while DC voltage was measured to ± + mV.

In both experimental setups, temperature of PMN-PT specimens was varied with an oven to
investigate thermal (phase transition) effects. Specimens were placed next to the controlling
thermocouple of the oven to ensure temperature accuracy within ±0.5°C. To simulate free
boundary conditions in the transverse plane, specimens were suspended in the oven by their
electrode solder connections. Although this configuration created local stress variation near the
solder joints, the magnitude of these variations were negligible, because of the PMN-PT
ceramic's stiffness and relatively low density.

For dynamic measurements, a moderate AC electric field was used to electromechanically excite
the PMN-PT specimens, while a DC bias field was concurrently applied and stepped, so that
bias-field effects on PMN-PT behavior could be surmised. The amplifier used in these
experiments was capable of providing simultaneous DC and AC high-gain, low-current
amplification of voltages supplied to specimens. Broad-band frequency responses were created
using a noise generator as the AC input, whose amplified signals were limited to 75 kV/m
amplitudes. FFT spectral analysis of electromechanical data from PMN-PT required A/D
conversions at 5 kHz to avoid aliasing at 2 kHz.

The thicknesses of all specimens were identical, at around 0.43 mm; however, the electrode
areas, thus specimen capacitances, varied. Specimens ranged in dimensions from 0.0589 m x
0.0125 m to 0.0289 m x 0.0126 m. Nevertheless, the lowest fundamental extensional-mode
frequency was at 28.4 kHz, well above 2 kHz, such that any modal effects on dynamic
measurements were designed to be negligible.

To summarize, the actuation experiments were intended to investigate free-induced-strain
electromechanical responses of PMN-PT with respect to temperature, bias field, and frequency.
Specifications for these experiments are outlined in Table 1, and the test matrix is shown in
Table 2. Thermal effects between 250C and 85 0C, corresponding with the diffuse ferroelectric-
paraelectric phase transition of PMN-PT, were studied. Influences of bias field levels between
0 and 814 kV/m were determined, and frequency responses between 0 and 2 kHz were
investigated.
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Sensing Property Exueriments
Similar to the actuator experiments, the sensor experiments with PMN-PT involved investigation
of transverse electrostrictive properties, specifically the charge developed on parallel-plate
electrodes resulting from the stress applied transverse to the direction of polarization. As is
evident in eq. (2), the level of electric field generated by a stressed electrostrictor depends on
how much the sensor is plarized. Contributions to the transduction sensitivity, the collective
terms between applied stress and generated field in eq. (2), arise from the electrostrictive effect
of applied polarization, as well as any piezoelectric effects due to spontaneous polarization.
Since applied polarization varies with applied electric field, there is a bias-field dependence of
the transduction sensitivity apparent in the LGD phenomenological derivation of eq. (2). The
experimental arrangement for observing transverse electrostrictive sensing properties using the
strain-gage technique is shown in Fig. 3.

As indicated in Fig. 4, PMN-PT monomorphs were bonded to the base of a cantilever beam,
which was excited using an electromagnetic shaker with random noise input. Strain gages were
attached to the exposed, unbonded surface of a PMN-PT specimen and to the opposite, unbonded
surface on the beam. Transfer function analysis was performed for each strain signal with
respect to the sensor output, while care was taken to ensure that the strain gage of interest was
on an electrically grounded surface. The average of these two analyses for each sensor test was
chosen to represent the sensor transduction capabilities; thus, an average, uniform strain field
was determined and assumed to represent the input to PMN-PT sensor specimens.

Specifications for sensing experiments are provided in Table 3, and the test matrix is listed in
Table 4. As in the actuation studies, bias fields ranged from 0 to 814 kV/m. Data were
digitally collected at 2 kHz, with anti-alias frequency of 500 Hz. Beam dimensions were
designed so that the first bending mode was larger than the maximum frequency of interest for
the studies, in this case 500 Hz. Since only bending mode vibration occurred in the beam, only
flexural stresses were transmitted to the PMN-PT sensing specimens. Frequencies of 2 kHz
were not feasibly studied in this configuration, due to the difficulty of exciting structural
elements at such high frequencies. Furthermore, thermal effects could not be reliably tested
using the shaker-beam configuration, so that thermal and high frequency results on sensing
properties were waived for analytical correspondence to actuation and dielectric experiments.

Dielectric Property Investigations
In order to quantify the individual parameters contributing to the electrostrictive effects,
dielectric properties between parallel plates of specimens used for actuation and sensing
investigations were distinguished. The dielectric response of PMN-PT monomorphs were
examined using an impedance analyzer, which was capable of examining electrical response
functions from 100 Hz to 100 MHz. For these experiments, testing frequencies ranged from 100
Hz to 10 kHz, and the parameters investigated included capacitance and permittivity ratio.
Relative permittivity was readily determined from capacitance measurements, including analytical
adjustments for edge effects. As exhibited in the test matrix of Table 5, temperatures of PMN-
PT specimens were varied between 15'C and 85°C, which encompasses the range of the diffuse
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phase transition. Bias field effects were not examined during this test, mainly because the
impedance analyzer was not equipped to handle such large DC bias fields.

Experimental Results and Discussion

Dielectric Results
Since polarization is an extrinsic parameter used to describe electrostrictive relations for
actuation and sensing in equations (1) and (2) and since electric field is related and is more
practical for engineering design, the dielectric properties which associate field and polarization
are essential to a model-based description of electrostriction with the relaxor ferroelectric PMN-
PT. For this reason, experimental results for dielectric properties are described prior to
actuation and sensing results. Although much of the existing literature pertaining to PMN-PT
involves characterization of electric permittivity relations, it was important to identify the
relations for specimens used in the present study, so that electromechanical results can be
appropriately interpreted.

In Fig. 5, results for the weak-field (2.3 kV/m) relative permittivity and permittivity ratio of
PMN-PT specimens are shown with respect to temperature. The broad and frequency-dispersive
thermal phase transition typical of relaxor ferroelectrics (Cross, 1987) is evident in this figure.
Values and shapes of curves in Fig. 5 correspond well with results obtained by Swartz et al.
(1984) for PMN-PT with a processing history similar to the specimens in this study. It should
be noted here that the standard deviation ranged from 50 to 180 for relative permittivity data and
from 0.0001 to 0.0026 for permittivity ratio data.

Characteristically, higher frequency excitations result in a reduced, or dispersed, dielectric
constant and increased dielectric loss for the ferroelectric-dominated phases prior to the dielectric
maximum. With the onset of paraelectric phases, frequency dependence is negligible. These
frequency relations are notable in the dielectric frequency response plots of Fig. 6. For
temperatures past the Curie maximum temperature, T,.., of around 45-500C, the relative
permittivity and permittivity ratio are flat with respect to frequency. For temperatures below
T.., there is a linear decay of the dielectric constant and an increase in permittivity ratio with
respect to the logarithm of frequency.

AC Actuation Results
In Table 2, the test matrix for investigating the actuation response of PMN-PT specimens shows
that electromechanical properties were simultaneously investigated with respect to temperature,
frequency, and electric bias field. These investigations have prompted some interesting results,
especially when compared with dielectric results previously described. For example, in the plots
of Fig. 7, frequency dispersion is much more pronounced in the actuator transduction thermal
responses than in the dielectric thermal responses of Fig. 5. Furthermore, the maxima of the
broad thermal phase transition appear shifted, when comparing the actuator transduction with
the dielectric response, from between 45°-50°C to between 25-300C. The actuator transduction
sensitivity described in these figures is equivalent to the d-coefficient for piezoelectrics; it is the
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ratio of induced strain to applied AC electric field.

The apparent shift in the phase transition maxima can be explained by the temperature
dependence of the electrostrictive coefficient described by Zhang et al. (1989). The net effect
of Q decreasing, while the dielectric constant increases to a maximum near 45TC, as in Fig. 5,
is that the maximum electrostrictive actuator transduction is shifted, compared to the maximum
permittivity. Pronouncement of the frequency dependence of the actuator transduction sensitivity
compared with the frequency dependence of the dielectric response can be explained by
examining the LGD phenomenology of eq. (1). By combining eqs. (1) and (3) and by ignoring
initial conditions and neglecting contributions from the electrostrictive piezoelectric term, the
free-induced strain,

A Q.(,,xhE,,)2. (4)

According to eq. (3), the relative dielectric susceptibility and relative permittivity are practically
identical for high permittivity materials like PMN-PT. In eq. (4), free-induced strain varies with
the square of relative susceptibility, thus the square of relative permittivity. Therefore, variation
of dielectric properties due to frequency is more pronounced in the actuator strain transduction
curves of Fig. 7 than the dielectric responses of Fig. 5. This variation is likewise evident in the
frequency response plots of Fig. 8, which contains results at a different bias field.

In Fig. 8, the flat response of about 0. 1 x 10-10 (m/m)/(V/m) at 850C corresponds with the flat
response for the 85 0C dielectric permittivity curve of Fig. 6 and relates to the introduction of
paraelectric material phases. The frequency response plots of Fig. 9, demonstrating bias-field
dependence, have similar shapes to those of Fig. 8. In both of these figures, the response levels
out at higher frequencies. Both figures also indicate anomalous results between 400 and 600 Hz.
In Table 1, values for the first bending mode of the experimental actuators are indicated. Since
some curvature was noted for these specimens and since asymmetric material properties about
the neutral axis were introduced by bonding strain gages, the apparent resonantlanti-resonant
results between 400 and 600 Hz occur due to bending.

In Fig. 9, the bias-field dependence of actuator transduction sensitivity is also introduced.
Constant frequency plots in Fig. 10 confirm this dependence and indicate a law of diminishing
returns for the transduction sensitivity with respect to higher bias fields. For actuation studies,
applied electric field was composed of a DC component, ranging to very large values of 814

kV/m, and a moderate AC component having an amplitude of at most 75 kV/m. If the electric
field is algebraically separated into these two components and if the separate effects of field on
the dielectric susceptibility are considered, eq. (4) becomes, after assuming unidirectional field
and considering only the transverse strain component,

e 2 Dc Dc) 2 2X Dc E C DAC AC ACEC2 (5)Al 'Q13o[(X33 E; ) +2X33 X33 F- + (X33 E3 ]

Actuator transduction sensitivity represents the free strain induced by AC field, or the partial

derivative of eq. (5) with respect to EAc,
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aA, "2 Q ,3X33X313 ,(X33 AC] (6)

In eq. (6), both AC and DC components contribute to the actuator transduction. The AC
component is constant, except for frequency dependence, so that for each constant frequency plot
in Fig. 10, the DC, or bias field, component evokes change in the sensitivity. According to eq.
(6), a rise in DC field will increase the transduction sensitivity; however, as described by Pan
et al. (1989), decreased permittivities (susceptibilities) accompany increased bias fields, so that
the net effect on actuator transduction is the peak demonstrated by data of Fig. 10. Frequency
effects on the AC permittivity demonstrate shifts in the bias field associated with maximum
transduction and variation in transduction amplitudes.

Thermal considerations for bias-field-dependent actuator transduction results are y',yified by the
plots of Fig. 11. For temperatures above T.,, the paraelectric phase dominates, h-;havior, such
that the relaxor ferroelectric effects of reversible polarization and direct electrostriction are not
revealed until very high fields, at which remaining ferroelectric phases are field-excited enough
to induce aggregate strain. Beneath T,,,, the electrostrictive actuator specimens exhibit different
bias-field response shapes and maxima at different temperatures.

Finally, the sixth permutation in the temperature-frequency-bias field co-dependent, direct
electrostrictive behavior of PMN-PT is illustrated by the varying bias-field plots in the thermal
responses of Fig. 12. Shape changes of the thermal responses through the phase transition due
to bias field differences result from the effective interactions between the bias-field dependent
permittivity and the bias field itself. Examination of eq. (6) indicates that actuator transduction
sensitivity relies on this interaction. Data displayed for all dynamic actuation tests represent
specimen averages, ranging in standard deviation from 5x10"13 to 8x10"1 (m/m)/(V/m).

DC Actuation Results
As described earlier, DC actuation tests were also performed with PMN-PT specimens. Results
from these investigations are plotted in Fig. 13, whose data represent averages consisting of
standard deviations between 0 and 20 tLm/m. In Fig. 13, among the most noticeable
characteristics is the decrease in hysteresis, which is considerably less than that of the more
commonly used piezoelectric PZT, with increased paraelectric material phase (higher
temperatures). Another notable characteristic is the nonlinear, yet non-parabolic relation
between applied DC field and induced strain.

According to eq. (6), there is a quadratic relationship between applied field and induced strain;
however, there is also a quadratic relationship between susceptibility and induced strain. As
described above, the net effect of the product of the square of a permittivity declining with
applied field and the square of that field appears in the shapes of the curves in Fig. 13. As
introduced by Zhang and Rogers (1992), the ferroelectric relation between polarization and
electric field can be described using a hyperbolic tangent phenomenological model. The results
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from and implications of using this model are described in another paper (Namboodri and
Rogers, 1992b).

Sensing Results
Results from the sensor experiments with PMN-PT specimens described earlier are graphed in
Figs. 14 and 15. Differences between using PMN-PT as a sensor and as an actuator are readily
apparent in these figures. One noticeable difference is that the frequency responses for the
PMN-PT sensors between 0 and 500 Hz are flat, compared with the responses of Figs. 8 and
9 for PMN-PT actuators. The shape of plots in Figs. 8 and 9 are readily explained by the
shapes of responses in Fig. 5 for the dielectric permittivity, a constituent of PMN-PT
transduction. The difference in Fig. 14 is a consequence of the relative levels of induced
polarization. For the dielectric and actuation studies, moderate levels of AC polarization were
induced by electric fields; however, in the PMN-PT sensing studies, the stress-induced
polarization levels were millionths-to-billionths of the other two. Because the swings in
polarization magnitudes were far less during sensing tests, the frequency of these swings and its
effect on dielectric properties were negligible, so that frequency responses appear flat.

The insignificant frequency effects on sensing transduction are again apparent in Fig. 15, which
indicates bias-field dependence. Sensing transduction represents a modified version of terms in
the parentheses of eq. (2), whose collection is equivalent to the piezoelectric g-coefficient. By
assuming a linear, symmetric stress-strain law for PMN-PT and neglecting any feed-through or
initial conditions represented by E, eq. (2) can be rewritten,

E ,=[ ( Q,,,+ g#)Yj.]s.. (7)

The bracketed terms of eq. (7) symbolize the sensor transduction sensitivity depicted in Figs.
14 and 15.

The electrostrictive piezoelectric voltage coefficient g* of eq. (7) appears in Fig. 15 as non-zero
transduction values for zero applied bias field. The nonlinearity of the curves of Fig. 15 arises
from P-E nonlinearity. According to LGD phenomenology of eq. (7), sensor transduction is
linearly related to applied polarization. Since electric bias field of the abscissa of Fig. 15 is used
to induce that polarization, the nonlinearity, as previously alluded for other tests, must result
from the nonlinear electric field-polarization relations.

Conclusions and Recommendations

In this paper, electromechanical behavior of the relaxor ferroelectric PMN-PT was
experimentally characterized. Dielectric, sensing, and actuation behaviors of PMN-PT
monomorphs were investigated. Based on Landau-Ginzburg-Devonshire (LGD) phenomenology
for electrostrictive effects, the relative susceptibility is of utmost importance, since
electrostriction is related to polarization. As such, aspects of polarization, including dielectric
susceptibility, were carefully considered for electrostrictive sensing and actuation constitutive
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relations with PMN-PT.

Although this research includes results which account for the behaviors of PMN-PT very well,
these results describe only transverse transduction, i.e., only actuation and sensing perpendicular
to applied or measured electrical quantities. Furthermore, there are other aspects of the findings
in this paper which require further investigations. Approaches discussed herein for modeling
PMN-PT behavior could be generalized and improved by the following suggestions:

* Processing effects on grain size should be studied for 0.9PMN-0. IPT specifically, to
realize the relations between grain size and dielectric properties proposed by Shrout et
al. (1987).

• Frequency dependence of the electrostrictive coefficient should be further characterized
and validated, since there are no other research endeavors in the literature to confirm this
behavior.

"* The electrostrictive piezoelectric coefficients developed from LGD phenomenology
require better understanding. For example, the relation of the electrostrictive
piezoelectric voltage coefficient to spontaneous polarization could be researched.

"* The tensor behavior should be robustly investigated and modeled, like the transverse
transduction studies of this paper, for design of PMN-PT sensors and actuators in
configurations utilizing other tensor properties, for example, a stack geometry.
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Table 1. Specifications for PMN-PT transverse actuation experiments.

28.9 - 58.9 x 12.5 x 0.43 mm3

Specimens 28.4 - 47.9 kHz first extensional mode
427 - 1,773 Hz first bending mode

Strain Gages 0 jcm/m thermal expansion compensation
± 1 jm/m accuracy

Strain Gage Conditioner Quarter bridge configuration
0.496 mV/;zm/m transduction

Oven 25 - 85°C experimental operating range
± 0.5°C accuracy

DC Supply 0 - 400 V (DC tests)
0 - 18 V (AC tests)

Noise Generator + 1.5 V maximum amplitude
(AC Supply) 0 - 20 kHz random noise

Amplifier 20(x) gain
0 - 5 KHz frequency response

Voltage Divider 1:10 ratio
56 k- input impedance

8-pole, 6-zero elliptical
Anti-alias Filter 2 kHz cutoff setting

100 - 189(x) gain on strain signal
I (x) gain on voltage signal

PC Computer Two channels
and A/D Board 0 - 14 kHz sampling range

1024-point FFT, 60 averages
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Table 2. Text matrix for PMN-PT transverse actuation ex-'eriments.

Temperature (0C)

25 35 45 55 65 85

116 0-2 kIz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz

233 0-2 k}{z 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kI-z

B34 0-2 k-Hz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHzBias

Field 465 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz
(kV/m) 581 0-2 kHz 0-2 kHz 0-2 kHz 0-2 k"z 0-2 kHz 0-2 kHz

698 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz

814 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kHz 0-2 kIHz
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I

i Table 3. Specifications for PMN-PT transverse sensing expenments.

I
I

Specimens 23.6 - 57.2 x 12.5 x 0.43 mm'

Strain Gages 0 ;Ami'm thermal expansion compensauon
±. 1 Amim accuracy

Strain Gage Conditioner Quarter bridge configur-ation
0.496 mV;/AmIm transducoon

DC Supply 0 - 350 V

Voltmeter + I mV

Noise Generator . 1.5 V maximum amplitude
(AC Supply) 0 - 20 kHz random noise

Shaker 17.8 N force, ± 2.50 mm stroke
0 - 12.5 kHz frequency range

Beam Aluminum, 63.5 x 20.3 x 3.1 mm'
4.0 kHz fundamental bending mode

Amplifier 0 - 5 kHz frequency response

8-pole. 6-zero elliptical
Anti-alias Filter 500 Hz cutoff setting

100(x) gain on strain signal
2 - 100(x) gain on voltage signal

PC Computer Two channels
anid A/D Board 0 - 14 kHz sampling range

_1024-point FFT, 60 averages
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Table 4. Text matrix for PMN-PT transverse sensing experiments.

Bias Field (kV/m) Frequency (Hz)

0 0-500
116 0 -500

233 0 -500

349 0 -500

465 0-500

581 0- 500

618 0-500

814 0- 500
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Table 5. Text matrix for PMN-PT dielectric experiments.

Temperature (0C) J Frequency (kHz)

15 0.1- 10

25 0.1 - 10

35 0.1- 10

45 0.1- 10

55 0.1 - 10

65 0.1 - 10

75 0.1- 10

85 0.1- 10
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Abstract

Fundamental to the design of intelligent material systems and structures are the realization of
attributes of the constitutive materials-the sensors and actuators-and the ability to model the
characteristics of these transducers. In this paper, electromechanical behaviors of the
electrostrictive relaxor ferroelectric lead magnesium niobate-lead titinate (PMN-PT) are
phenomenologically modeled. The dependencies of PMN-PT electromechanical transduction on
temperature and frequency, characteristics of relaxor ferroelectrics, and on applied direct-current
electric field, an attribute of electrostrictors which enables tunable transduction sensitivities, are
modeled with respect to electrical, sensing, and actuation properties. A general procedure for
using the developed constitutive models to quantitatively describe the behavior of PMN-PT is
introduced for sensing and for the three types of actuation-servo, on/off, and AC. The
objective for this research is to model the behaviors of PMN-PT sensors and actuators with
respect to temperature, frequency, and bias field for practical use in mechanical design.

Nomenclature

do Electrostrictive piezoelectric strain coefficient (m/V)
E Electric field, vector (V/m)
"E4C Dynamic (AC) contribution to electric field (V/m)
"EDC Static (DC) contribution to electric field (V/m)
g0  Electrostrictive piezoelectric voltage coefficient (V-m/N)
Li Maximum permittivity-diffuseness model coefficients (K)
k Constant in hyperbolic tangent polarization model (m/V)
ki Polarization model temperature coefficients (m/V-KI)
P Polarization, vector (C/ro)
F' Saturation polarization (C/m2)
Q Electrostrictive coefficients [transverse, Q13] (m4/C2)
q Electrostrictive frequency model coefficient (m4/C2)
S Applied mechanical strain (m/m)
T Temperature (*C, K)
T,. Curie temperature for maximum permittivity with relaxor ferroelectrics (°C, K)
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X Susceptibility temperature-frequency model coefficient
XAc Susceptibility paraelectric temperature-frequency model coefficient
XE Susceptibility temperature-frequency-bias model coefficient (V/m)
Xi Susceptibility grain-size model coefficients (am-)
X.• Maximum susceptibility temperature-frequency model coefficient
Y Young's modulus of elasticity (N/rn)

R e iik
e" Relative electric permittivity
f " Relative electric permittivity loss

e,, , I,, tntegral mean relative permittivity for relaxor phase transition
E,•. K.,U Maximum relative permittivity of ferroelectrics
C° Electric permittivity of free space, 8.85x10"12 F/m
K Dielectric constant, same as relative electric permittivity
A Free-induced strain (m/m)
X Level of diffuseness of relaxor phase transition (OC, K)
a Applied mechanical stress (N/m2)

Maximum Curie temperature-grain size model coefficients (K/Armi)
Ir.= Maximum Curie temperature-frequency model coefficient (.C, K)
X Relative dielectric susceptibility
X, Integral mean relative susceptibility for relaxor phase transition

Maximum relative susceptibility of ferroelectrics
Frequency (Hz)

Introduction

In the past decade, interest in electroceramic transducers has been renewed by the conceptual
advent of intelligent material systems and structures. Intelligent, or smart, material systems and
structures are designed, via control capabilities and architected mechanics, to autonomously and
judiciously sense and respond to their environments using transducer materials, i.e., sensors and
actuators. Much progress has been made in the development of applications with electroceramic
transducers and their integration into these systems; consequently, the need for appropriate
mechanical characterization and useful, quantitative constitutive modeling for design applications
has arisen.

Although electronic ceramics comprise a tremendous variety of sensors and actuators, the most
common and pertinent to intelligent material systems and structures are those containing an
electromechanical relationship. Application of these electroceramics are found in the areas of
mechanical transduction, vibration, and acoustics. Piezoelectric and electrostrictive materials
are used almost exclusively in these fields. Lead magnesium niobate doped with lead titinate
(Pb[Mgt,3Nb3]O3-PbTiO3, or PMN-PT) is a ceramic which exhibits a strong electrostrictive
effect. Electrostriction involves a nonlinear electromechanical coupling for which the material
develops a strain proportional to the square of the polarization. Free-induced strains in PMN-PT

59



as high as 4-5x10" have been achieved for realizable fields on the order of I01 V/mm (Ealey and
Davis, 1990). For comparison, a piezoceramic develops strain proportional to the electric-field-
induced polarization. Strain levels for the best piezoelectrics are comparable to the best
electrostrictors (Damjanovic and Newnham, 1992). When compared with a typical piezocerarnic
such as lead zirconate titinate (Pb(ZrTi]0 3, or PZT), PMN-PT distinguishes itself not only in
the nonlinearity of its coupling, through which tunable transduction sensitivities can be achieved,
but also in its electromechanical and thermal stability, its negligible dielectric aging, its
repeatability under cyclic driving fields, and its dynamic response (Cieminski and Beige, 1991;
Cross et al., 1980).

A description of the advantages of PMN-PT, however, would be remiss without relating its
disadvantages. Because the response of PMN-PT is nonlinear, quadratic with respect to
polarization, the useful actuator authority for AC applications is limited. Furthermore, the
electromechanical response is highly frequency-dependent and is restricted to a temperature
range in which the dielectric permittivity is large, namely the relaxor phase transition range.
Finally, deformation for low applied electric fields is small (quadratic behavior), so that
electrostrictors such as PMN-PT somewhat exacerbate the desire for low-voltage devices.

Although much research into the constitutive behavior of PMN-PT has been reported, emphasis
has been placed on material processing and dielectric behavior, due to attractive high permittivity
values. The bridge of understanding from processing, composition, and dielectric properties to
the mechanical domain has been qualitatively described and incompletely formulated. The
electromechanical response of PMN-PT requires thorough investigation from an engineering
perspective and sound, practical constitutive models for use in design and integration into
intelligent material systems and structures. The objective of this research is to model the
electromechanical behaviors of PMN-PT, with an emphasis on engineering design utility.
Constitutive modeling of the electrostrictive properties of PMN-PT have been performed with
respect to temperature, frequency, and DC electric field.

In another paper, the authors have experimentally established the transverse dielectric and
electrostrictive behaviors of PMN-PT (Namboodri and Rogers, 1992b). In this paper, the
ultimate objective for this research, to develop a model which can be used for the electro-
mechanical design of intelligent material systems which incorporate PMN-PT electrostrictors,
will be fulfilled. As alluded in quotes of Moulson's and Herbert's Electroceramics: Materials.
Properties. Applications (1990), it is nearly impossible to theoretically account for the precise
behaviors of electroceramics. For this reason, an empirical approach to modeling has been
undertaken. Electrostrictive phenomenology finally formulated by Devonshire is first described
for a fundamental basis of PMN-PT constitutive modeling (Grindlay, 1970). Then, the diffuse
phase transition characteristic of relaxor ferroelectrics (Cross, 1987) is considered by interpreting
a model put forth by Shrout et al. (1987). Frequency dispersion of dielectric properties is
considered in this model. Next, effects of bias field on permittivity are examined and modeled,
and the impact of frequency on electrostrictive properties is appraised. The paper concludes
with model results and a procedural summary for modelirg PMN-PT electromechanical
behavior.
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Electrostrictive Phenomenology

Acccrding to Landau-Ginzburg-Devonshire (LGD) thermodynamic formalism, relating dielectric
and elastic properties of solids, electrostriction arises from free energy terms (Newnham, 1991;
Namboodri and Rogers, 1992a). Three different but equivalent effects arise when the three
possible partial derivatives of the electrostrictive free energy terms are taken in different orders.
Integration of these relations yields constitutive equations for electrostrictive behavior.

With this so-called 'direct effect,' free-induced strain varies with the square of polarization:

Ai =QUkj.Pk +dP*.P +A'. (1)

Physically, the piezoelectric coefficient in eq. (1) relates any effects from spontaneous
polarization of an electrostrictor. One converse effect describes the electric field developed
when an electrostrictor is stressed,

Ej =(Q~kpk+9g)aG +E'. (2)

The second converse electrostrictive effect involves the linear stress dependence of susceptibility.

Equations (1) and (2) represent the electrostrictive actuation and sensing constitutive relations.
For practical engineering design and implementation, the polarization term prevalent in these
equations does not possess the parametric convenience of applied electric field. Conventionally,
linear dielectric behavior is assumed for a parallel-plate capacitor, where induced polarization
is described as the product of dielectric susceptibility and electric field:

P,= /E c' ), (3)

Therefore, not only are the actuation and sensing properties in eqs. (1) and (2) impczi.ant. but
also dielectric properties are important to electrostrictive behavior.

Frequency Dispersion of Dielectric Properties

From grain-size studies of a composition of PMN-PT, Shrout et al. (1987) introduced a model
for the Gaussian appearance of the relative dielectric permittivity through the ferroelectric-
paraelectric phase transition,

E'(T7) 2E"EX 2  (4)
2c-X2 +e.[T- T,,] 2

T,,, e,,•, and X are all parameters that can be experimentally obtained at a given frequency or
as Shrout suggested, can be related to grain size. Thus, the only parameter unrealized for the
model of eq. (4) is e,.. No data exist in Table 1. 1 to relate e, to grain size. Regardless, this
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constant, which represents the integrated mean of relative permittivity across the phase
transition, can be determined through eq. (4) by measuring the permittivity at one temperature,
for example 25°C. Therefore, the permittivity phase transition (at a given frequency) of a solid
solution of PMN-PT can be modeled with eq. (4) by measuring grain size and permittivity at
one temperature.

As shown in Fig. 1, model of eq. (4) compares well with data from Namboodri and Rogers
(1992b) up to and just past the Curie maximum temperature, T,... Values of model parameters
for this plot include T,. = 47.5"C and ec,.,, = 21500, X = 270C, and Cm = 14500. The
Gaussian nature of the model dictates that the distribution be symmetric about T,,,, which is not
the case for PMN-PT data of Fig. 1. Although the quadratic, Gaussian model of eq. (4)
represents behavior very well for ferroelectric phases of the thermal transition, the linear,
paraelectric behavior past the Curie maximum is not well-modeled.

Furthermore, frequency dispersion of permittivity is not incorporated. Both of these problems
are the subject of the next section. In addition to the insufficiency of representing permittivities
past the Curie maximum temperature, the model of eq. (4) neglects a major contributor to the
dielectric response, frequency. Frequency-dependence is prevalent in the experimental results
of Namboodri and Rogers (1992b). From these curves, one can surmise that the parameters of
eq. (4)-T., e., and E,--vary with frequency. Viehland et al. (1990) observed the similarities
of the microscopic compositional fluctuation behavior of relaxor ferroelectrics to the spin-glass
behavior of superparamagnetic relaxors and derived a 'spin-glass-analogous model,' which
indicates frequency dependence of T... In this equation, Viehland proposed a logarithmic
relation between the Curie maximum and frequency, supported by experimental data. In this
vein, the Curie maximum and maximum relative permittivity (thus, susceptibility) are proposed
as functions of the logarithm of frequency:

T•.(•o) =T,(w0) ÷ r.,.l n (w/) (5)

x,,.(w) =x.(w) +Xln(w./w). (6)

With respect to the model of eq. (4), three of the four parameters necessary to determine the
relative permittivity at a given frequency and temperature-T.=, e,,, and X-can be determined
experimentally or determined against grain size.

The remaining parameter, m,. or X,,, can be determined from the other three and from a known
relative susceptibility at a known temperature. However, X. will certainly vary with frequency,
since it represents an integral mean of susceptibility. To account for this probable frequency
dependence, a logarithmic relation similar to those of eqs. (5) and (6) is proposed:

X(T.,, (7)
X~,,A) =x(T,,, w)+Xln (w0Az),()

where X(Tow,) is a measured susceptibility at a known temperature and interrogation frequency.
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Again, only the grain size number and one susceptibility measurement are required to use this
frequency-dispersive, dielectric phase transition model.

The problem of accuracy for increased paraelectric phase temperatures still remains with the
model of eq. (4), upon which everything is based. In Fig. 1, these permittivities
(susceptibilities) seem to be linearly related to temperature. However, this linear relationship
begins at temperatures somewhat past the Curie maximum. Empirically, the onset of linear
thermal-permittivity variance occurs at a temperature about 10% greater than the maximum
Curie temperature, which is frequency dependent. From eq. (4) and from these empirical
observations, the AC susceptibility can be described by the following equations:

T Z 1. T,1 ()

XC(T, W= 2 Xm'x(w)X.(w)X2  (8)2X,•(w)XI÷X.(w)fr-T.(w)]I

T > 1. 1 T,,,(w),

x4C(T, j) =xc(1.1 T.(w),w) +Xc[T- 1.1 T.(w)]. (9)

By implementing eqs. (5)-(7) and presuming T, < 1. 1 T,,.(w), the term X,(jw) can be
determined, as described above, from the following expression:

X X (T) = O X( (W)[T,-T.(W) 2  (10)2 X2'x.(w) -x(T.,wo)]

Results from this complete frequency-dispersive, dielectric phase transition model are compared
with experimental data in Fig. 2. Model results were generated using the following constants:
T. = 25"C, w. = 100 Hz, T,(O0 ) = 47.5"C, , = -1.3"C, X,.(w,) = 21500, X(To,(o 0) =
14063, X,.,. = 400, X = -532, XAc = -255, and X = 27"C.

The frequency-dispersive, dielectric phase transition model embodied by eqs. (8) and (9) has
been developed so that only two measurements are required, grain size and permittivity at a
known temperature and frequency. With grain size, T X.,,(w), and X can be determined,
as proposzd by Shrout et al. (1987). With these values, T,..(w) and x,,.(w) can be ascertained
using eqs. (5) and (6). The measurement of relative susceptibility at known temperature and
frequency is required to complete the models of eqs. (7) and (10), for X(T°,s) and x,(w),
respectively. Finally, the AC relative susceptibility with respect to both frequency and
temperature, within the phase transition region, can then be obtained using eqs. (8) and (9).

Bias Field Considerations

Experimental results in Namboodri and Rogers (1992b) for PMN-PT actuation indicate that
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applied DC electric bias field contributes significantly to the electrostrictive response of PMN-
PT. Equations (1) and (2), based on the LGD phenomenology, indicate direct influences of DC
bias field on transduction sensitivities. Additionally, Pan et al. (1989) suggest an influence of
bias field on dielectric properties and support this assertion by the e.xperimental findings.

Zhang's and Rogers' (1992) proposed hyperbolic tangent relation for polarization attempts to
model the nonlinear polarization-electric field (P-E) coupling of ferroelectrics. DC actuation
investigations described by Namboodri provide a means for evaluating the hyperbolic tangent
expression. Although indirect, the P-E relation can be compared with tree-induced strain data
from DC actuation experiments by assimilating it into the LGD phenomenology of eq. (1):

A1(EDC) Q[P'tarh(kDC)]2 (11)

Approximate values for saturation polarization and the hyperbolic tangent polarization model
coefficient obtained from results by Pan et al. (1989) can be used. According to these results,
since Q13 does not vary greatly with temperature (Zhang et al., 1989), it appears that. either P'
or k must vary thermally, based on a comparison with eq. (11). Because the shapes of different
isothermal plots vary with respect to bias field, it is more likely that k, not the scaling factor P'
of eq. (11), changes with temperature. A value for the saturation polarization, P = 0.23 C/mi,
and an algebraic expression for the hyperbolic tangent model coefficient temperature dependence,

N=2k(7) = Ek,(12)
i=0

have been chosen for comparison of DC actuation data with results from eq. (11).

Free-induced-strain results from experiments and from the model of eqs. (11) and (12) are
compared in Fig. 3. Values for Q, P/, and k as described above were used, where k0 =
3.694xI0 5 V/m, k, = -2.008x10I7 V/m-K, and k2 = 2.768x10"1 V/m-K2 . These plots indicate
that the hyperbolic tangent model for polarization fits experimental data very well and can
perhaps be relied upon for modeling bias field effects on relative dielectric susceptibility.

By comparing t&e hyperbolic tangent P-E expression with that of the conventional eq. (3), the
hyperbolic tangent polarization model can be related to the relative dielectric susceptibility:

XDc(T,E DC) = P -tanh [k(T)E C]. (13)
eoEDC

To correlate this formulation with experimental DC actuation data for further analyses, it is
necessary to derive an expression to reduce free-induced strain data to dielectric information.
Based on the electrostrictive and dielectric phenomenology of eqs. (1) and (3), the relative
susceptibility realized from free-induced transverse strain,
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DC AZ(TEC (14)Q13 40o[FT]

Up to this point, models have been proposed for the AC dielectric susceptibility dependence on
both temperature and frequency and for the DC dielectric susceptibility dependence on bias field
and temperature. These models have been corroborated by experimental results. Regarding
conservative dielectric properties, only one other relation must be addressed to complete the
temperature-frequency-bias field co-dependent models for PMN-PT dielectric properties. The
AC dielectric susceptibility has not been considered with respect to bias field. A logical
conclusion from results with the DC susceptibility is to incorporate the hyperbolic tangent
formulation into the AC susceptibility models:

X11(T , tanh[k(7)E DC] (15)
XEE DC

Equation (15) will be used in modeling AC actuation with PMN-PT, as later discussed.

Electrostrictive Coefficient Relations

The transverse electrostrictive coefficient cited in models introduced by eqF. (11) and (14) has
been assumed constant with respect to temperature and bias field. Although previous studies
have indicated variation with these parameters (Zhang et al., 1989), the degree is sufficiently
minor, less than ten percent, to warrant neglect of their effects. This assumption is supported
by the results of Fig. 3. However, one other parameter considered in this study, frequency, has
not yet been affiliated with the electrostrictive coefficient.

The experimental actuator responses in Namboodri and Rogers (1992b) show a rather drastic
reduction of transduction sensitivity with respect to increased frequency. The large change
cannot be explained by the dispersion of relative permittivity. Thus, one might surmise that the
electrostrictive coefficient decreases with respect to frequency. It is here proposed that, like the
variance of permittivity, Q decreases with the logarithm of frequency:

Q(w,) =Q(w) +qln(j/w). (16)

Equation (16) completes a constitutive model for the electrostrictive response of PMN-PT, so
that results from actuation tests can be directly compared.
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Dielectric and Actuator Transduction Responses

From eq. (1), while considering the separate effects of applied AC and DC fields, the actuator
transduction sensitivity can be derived:

aA(T,w,E) f2Q(cJ),eoDC(T,%ED)xýC(T, D,E C)E+C [X4 C(Tw,EDC)1 2EAC]" (17)
aEAC

Equations (14) through (16) model how dielectric susceptibility and electrostrictive parameters
vary with temperature, frequency, and bias field. Equations (4) through (13) support these
models and accentuate relations buried in the three equations.

Using eq. (17), results from the actuation experiments can be directly compared with constitutive
models introduced in this chapter. In Fig. 4, the DC relative susceptibility model of eqs. (12)
and (13) is compared with DC free-strain actuation data reduced by eq. (14). Values for
constants used to evaluate these expressions are given earlier. Data and model results are plotted
with respect to temperature at a given bias field. Frequency does not pertain to DC relative
permittivity.

As compared with AC results, most notable in Fig. 4 are the extremely large values of relative
permittivity, derived from both DC free-induced strain data and from the constitutive model.
Another difference is that the thermal response of DC susceptibility does not have the
characteristic Gaussian shape in the range of temperatures that the AC susceptibility does. The
experimental data do indicate, as does the model of eq. (5), that for lower frequencies, the Curie
maximum shifts to lower temperatures. Nevertheless, reduced data based on the electrostrictive
phenomenology-derived expression of eq. (14) corroborate the high permittivity values and
thermal response shape for DC electric field stimuli. The discernment of relative susceptibility
in experimental results arises from AC field inputs. According to the differences between AC
and DC results, frequency dispersion of dielectric properties excited by any AC source
drastical1y reduces the realized permittivity of DC-induced polarization.

In Fig. 5, the AC relative susceptibility for constitutive models embodied primarily by eqs. (8),
(9), and (15) are compared with experimental results. It should be noted here that data in Fig.
5 have been reduced by eq. (15), since bias field effects could not be implemented in dielectric
experiments. All constants for the constitutive models illustrated in I-lots of Fig. 5 are identical
to those introduced earlier. Again, there is very strong correspondence between experimental
and model results for the thermal AC permittivity responses, both in shape and amplitude.

A final test of empirical, phenomenological modeling introduced in this chapter with respect to
temperature variation is to compare model results with PMN-PT AC actuator experimental data.
This comparison requires the use of eqs. (16) and (17), in addition to the permittivity model
equations. In Fig. 6, actuator transduction sensitivity experimental data is plotted with respect
to temperature at various frequencies and is compared with constitutive model results, which
incorporate results of Figs. 4 and 5. All constants used to formulate values for actuator
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transduction have been introduced, except for those of eq. (16), which are Q(100 Hz) = -0.014
m'/C 2 and q = 4.0057x10'- m4/C2. The shapes and amplitudes of formulated plots in Figure 6
fit data remarkably well. Based on these results, the constitutive models of this chapter appear
to successfully relate the behavior of PMN-PT relaxor ferroelectrics as electrostrictive actuators.

As described in Namboodri and Rogers (1992b), since the co-dependent effects of three extrinsic
parameters-temperature, frequency, and bias field-on dielectric and electrostrictive
performance of PMN-PT are studied, there are six permutations to descibe the material
behaviors. However, only three of these are necessary to fully comprehend the responses since
the other three are simply converse relations. One of these three, the thermal response at
different frequencies and constant bias field, is illustrated for DC susceptibility, AC
susceptibility, and actuator transduction in Figs. 4 through 6, respectively. The other two
responses must be examined to completely compare constitutive modeling efforts with
experimental actuation results.

One of these two, frequency response at different bias fields and constant temperature, precludes
the DC permittivity, since it cannot vary with frequency. Nonetheless, the AC relative
susceptibility certainly varies with respect to frequency, and plots comparing experimental and
model results are provided in Fig. 7. The model, which is based on linear variation of
permittivity parameters with respect to the logarithm of frequency, compares exceedingly well
to data from dielectric experiments. Again, all constants used to evaluate model equations have
been provided earlier in this chapter.

Amplitudes of frequency response plots in Fig. 8 for model results do not compare so favorably
with actuator transduction experimental data. However, shapes of model curves do correspond
with the data trends in this figure, and relative amplitudes for different bias fields match
reasonably well. If the maximum standard deviation of 8x10" (m/m)/(V/m) for actuator
transduction sensitivity data is considered, plots representing the model are well within empirical
variation. Regardless, shapes and relative amplitudes, both of which are satisfactory in Fig. 8,
are the two most important aspects of model responses with regard to mechanic,, and control
design.

A final comparison of experimental results with formulations introduced in this chapter involves
variation of PMN-PT material properties with respect to applied bias field. In Fig. 9, relations
for the DC relative permittivity are plotted against bias field at different temperatures. The
differences between experimental data and model results for relatively low bias fields illustrates
a failing of the hyperbolic tangent polarization model. According to DC free-induced strain data
reduced by eq. (14), the relative susceptibility is much larger for low bias fields than predicted
by the hyperbolic tangent model of eq. (13). The shape of responses with respect to smaller bias
fields is ill-represented by the model. One other problem with this model is that values for zero
applied DC field do not exist. Nevertheless, for larger values of bias field the model is
sufficiently accurate, according to Fig. 9.

In Fig. 10, experimental and model results for AC relative susceptibility are displayed witl.
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respect to bias field at different temperatures and constant frequency. This figure and Fig. 9
both illustrate the reduced effects of bias field with increased temperatures, or the onset of the
paraelectric phase of PMN-PT. Slopes of isothermal plots decrease drastically with higher
temperatures; in fact, at 85°C the susceptibility is almost constant versus bias field. Again, it
should be noted that data from dielectric experiments have been adjusted by bias field, as in eq.
(15), since such data were not experimentally obtained. This step was necessary to contrast
model results and data.

The plots of Fig. 11 complete the comparison of actuator transduction data with values from
constitutive models. Plots in this figure truly exemplify the accuracy and utility of the dielectric
and electrostrictive models introduced earlier in this chapter. Although formulated amplitudes
do not match exactly with experimental data, trends illustrated by model plots with respect to
bias field are notably consistent with data.

Figs. 4 through 11 illustrate the utility of the temperature-frequency-hias field co-dependent
models for DC susceptibility, AC susceptibility, and AC actuator transduction sensitivity
embodied in eqs. (4) through (17). Although amplitudes for these material behaviors do not
correspond precisely with experimental values, these models illustrate .rends exceedingly well,
within the ranges of data. Amplitude differences can be the result of many factors, such as
improper selection of model constants, variation of experimental conditions and procedure, and
material property variation due to processing. However, the correspondences of response shapes
and relative amplitudes are important with regard to mechanical design of PMN-PT actuators
for intelligent material systems. Design and performance optimization really precludes absolute
values in favor of relative improvements. Constants are of little consequence; although, the ratio
of constants can be extremely important. These ratios are reasonably portrayed by the models
and constants presented in this chapter for PMN-PT electrostrictive behavior.

Sensor Transduction Response

In the discussion of Namboodri and Rogers (1992b), there was attention given to fundamental
differences between employing PMN-PFT as an actuator and using it as a sensor. It was noted
that for sensing a, ,ication, the extent of polarization is minute. Since stress-induced
polarization amplitudes are very small, the unlikelihood that frequency affects polarization
reversal was recognized theoretically and observed experimentally. This insignificance must be
reflected in the modeling of PMN-PT behavior, as well.

All of the tools for modeling sensing behavior, even most of the material constants, ha\ e been
introduced. Essentially, the hyperbolic tangent polarization model, including the temperature
relations of eq. (12), are incorporated into the :lectrostrictive phenomenology for sens;ng. As

such, an expression for the sensor transduction sensitivity, disregarding tensor subscripts, is

derived:
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aE(TEDC') =QPI Ytanh[k(7)Epc] -g 0(7) Y, (18)

as

where k(7) is described by eq. (12).

Most of the constants of eq. (18)-Q, P', Y, k,, and g--have been appraised for PMN-PT used
in the present investigations, except for Young's modulus and the electrostrictive piezoelectric
voltage coefficient. Technical specifications from AVX Corporation (Galvagni and Duprt, 1990)
show values for the compressive Young's modulus as high as 112 GPa for stack geometries of
their PMN-PT solid solution. However, present studies empirically indicate that for the
monomorph configuration, the tensile modulus of elasticity is far less, at Y = 20 GPa. For
ceramic materials, this large difference between tensile and compressive moduli is not unusual.

The empirically derived value for the transverse electrostrictive piezoelectric term of eq. (18)
is around go(25*C) = 2x0(Y5 V-m/N. Actually, this value is related to the spontaneous
polarization of PMN-PT and thus depeads on temperature. Viehland et al. (1990) have
suggested a model for spontaneous polarization that relates to the 'freezing temperature,'
analogous to polar spin-glass magnetic behavior. However, electrostrictive piezoelectric-
spontaneous polarization relations are beyond the scope of this paper, so that the empirical value
provided above suffices for modeling efforts.

Based on these constants, the model of eq. (18) compares fairly well in Fig. 12 with data from
experimental sensing results of Chapter 3. Scatter in data results from 60-Hz noise and FFT
aliases of that noise. Since frequency was not modeled as influential on dielectric properties,
it was also considered to have a negligible effect on electrostrictive properties, so that a constant
value of Q = -0.008 m'/C 2 was chosen. In these plots, the independence of frequency is
illustrated by both experimental and model results. Furthermore, relative amplitudes of the
hyperbolic tangent model of eq. (18) compare favorably with data. Thermal responses for
PMN-PT sensing were not investigated, but the temperature-dependent coefficient k of eq. (12)
can be confidently used to model sensor transduction, based on results previously obtained.
However, the temperature-dependent constant g' must be considered in such modeling.

Summary: A Constitutive Model for PMN-PT

Since the order of model equatio .s in this paper does not necessarily best fit the order with
which a designer might employ them, the following summary is offered as somewhat of a
procedure for using the proposed models for PMN-PT transduction.

Sensing with P-N'-PT
The model proposed for sensing is completely independent of the separate descriptions for DC

and AC relative susceptibility. Furthermore, there is no frequency dependence for either
dielectric or electrostrictive terms in this model. As such, if PMN-PT is used as a sensor only,

69



there is no reason to bother with models for such terms. Equation (18) models the transduction
sensitivity of PMN-PT sensors, which is the voltage generated per unit of applied alternating
strain. This transduction sensitivity varies with applied bias field and with temperature. In this
equation, the electrostrictive, saturation polarization, and elastic modulus coefficients are
assumed constant. The hyperbolic tangent polarization model coefficient k varies with
temperature by the relation of eq. (12). The electrostrictive piezoelectric term varies with
spontaneous polarization, or temperature, and has not been modeled, since no experiments were
designed to investigate its behavior.

Servo Actuation with PMN-PT
The other electrostrictive effect involving use of PMN-PT with intelligent material systems and
structures is actuation. Three types of actuation have been classified--servo, on/off, and AC.
As with sensing, servo actuation with PMN-PT does not necessitate modeling frequency
dependence of dielectric and electrostrictive terms. Instead, a relation identical to eq. (11),
without tensor subscripts and including temperature variation, is all that is required:

A(T,E DC) =Q[Pltanh[k(T)E oC)]]1, (19)

where Q and P' are constants, and k(T) is given by eq. (12).

DC Dielectric Susceptibility
Since DC dielectric susceptibility pertains to bias fields with both on/off and AC actuation with
PMN-PT, its appraisal is a reasonable first step in realizing a model for frequency-dependent
actuator behavior. Equation (13) represents the temperature and bias field dependence of the
DC dielectric susceptibility. Again, the temperature variation of k is described by eq. (12).

AC Dielectric Susceptibility
If the design involves implementation of PMN-PT as a servo actuator, this section is of little
consequence, and the designer can skip to the next section on actuator transduction, unless there
are dynamic concerns. If an on/off or AC actuator is considered, the procedure in this section
should be consulted to model the temperature-frequency-bias field co-dependent AC dielectric
susceptibility. The proposed model begins with eq. (15), which really just describes the bias
field variation. The k polarization parameter comes from eq. (12), and XE is a constant.

To evaluate the variable XAc(Tw) of eq. (15), eqs. (8) and (9) need to be consulted. Variables
arising in these equations which must be accounted include X,, x,,,,, T."', and X.; xc is a
constant. Equations (8) and (9) are designed so that grain size and a permittivity at known
temperature and frequency are the only material measurements required, in addition to realizing
values for constants. For the frequency-dependent X,, eqs. (10) and (7) are utilized. x(T,,,wo)
describes the value of susceptibility measured at a known temperature and frequency, and X is
a constant.

The frequency dispersive relations for T,,.. and x,,, are provided by eqs. (5) and (6) respectively.
, and X,,,= are constants in these relations. T,.(w,), X,,.(w,'), and X can be related to grain
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size. Evaluation of these equations with their appropriate constants completes models for the
AC permittivity, so that dynamic actuation with PMN-PT can be perceived.

Dynamic Actuation with PMN-PT
The transduction sensitivity for cyclic driving of a PMN-PT actuator with a moderate alternating
electric field is modeled in eq. (17). Dielectric parameters in this model are found from
relations described above. Additionally, for moderate to large AC driving fields, the frequency-
dispersive electrostrictive coefficient is modeled by eq. (16). As with dielectric terms, this
relation involves a linear decay of the coefficient with respect to the logarithm of frequency.

Conclusions

In this paper, electromechanical behavior of the relaxor ferroelectric PMN-PT was
phenomenologically modeled. Dielectric, sensing, and actuation behaviors of PMN-PT
monomorphs were investigated. Based on Landau-Ginzburg-Devonshire (LGD) phenomenology
for electrostrictive effects, the relative susceptibility is of utmost importance, since
electrostriction is related to polarization. As such, aspects of polarization, including dielectric
susceptibility, were carefully considered and modeled for electrostrictive sensing and actuation
constitutive relations with PMN-PT. These models, based on phenomenological and empirical
equations, agree very well with data acquired from experiments with the PMN-PT monomorphs.
Highlights of results discussed are presented below:

* Phenomenology based on LGD thermodynamic formalism, which relates transduction
sensitivity with applied DC bias field, was developed for electrostrictive sensing. A
hyperbolic tangent model was introduced to relate bias field with polarization and to
include temperature variation of sensor transduction sensitivity. Comparison of
experimental data with PMN-PT monomorphs showed that results with this model
conform very well.

* LGD phenomenology for DC, or servo, actuation with electrostrictors was again related
to the hyperbolic tangent polarization model. Temperature and bias field dependencies
of PMN-PT servo actuation were experimentally demonstrated and were well represented
by constitutive models.

"* Relations for DC dielectric susceptibility of PMN-PT were derived from the hyperbolic
tangent polarization model and included temperature dependencies. The model agreed
very well with experimental data, except at low bias fields values. It underpredicted DC
susceptibility for bias fields less than 250 kV/m.

"* Temperature-frequency-bias field co-dependence on the AC dielectric susceptibility
modeled phenomenologically. The model embodies hyperbolic tangent polarization
relations for bias field described above, Gaussian relations for the primarily ferroelectric
phases of the thermal transition, linear relations with respect to temperature for the
paraelectric phases after the Curie maximum temperature, and logarithmic frequency
relations to account for dispersion of dielectric properties. The co-dependent model fit
data extremely well.

* Logarithmic frequency dispersive relations similar to those modeled for AC susceptibility
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were incorporated in models for the electrostrictive coefficient associated with moderate
cyclic-field driving of PMN-PT actuators.

" Models for the frequency-dependent electrostrictive coefficient, temperature- and field-
dependent DC susceptibility, and temperature-frequency-field co-dependent AC
susceptibility were tested by coupling them with LGD actuator phenomenology and
comparing the model results with experimental data. The constitutive model for cyclic
actuation of PMN-PT compared favorably with experimental results. Response shapes
and relative amplitudes were very accurate.

"* Finally, since an objective for the research was to develop models for PMN-PT which
can be readily utilized by intelligent material system designers, a procedural summary
for using the constitutive relations was included in the text.

Although results from this research include models which account for the behaviors of PMfN-PT
very well, these models describe only transverse transduction, i.e., only actuation and sensing
perpendicular to applied or measured electrical quantities. Furthermore, there are other aspects
of the findings and models in this paper which require further investigations. Approaches
discussed herein for modeling PMN-PT behavior could be generalized and improved by the
following suggestions:

"* Processing effects on grain size should be studied for 0.9PMN-0. IPT specifically, to
realize constants for the algebraic relations between grain size and dielectric properties.

"* Frequency dependence of the electrostrictive coefficient should be further characterized
and validated, since there are no other research endeavors in the literature to confirm this
behavior.

"* The electrostrictive piezoelectric coefficients developed from LGD phenomenology
require better understanding. For example, the relation of the electrostrictive
piezoelectric voltage coefficient to spontaneous polarization could be researched.

"* The tensor behavior should be robustly investigated and modeled, like the transverse
transduction studies of this thesis, for design of PMN-PT sensors and actuators in
configurations utilizing other tensor properties, for example, a stack geometry.

"* Finally, constitutive equations introduced in this thesis and perhaps augmented by future
studies should be applied both computationally and experimentally to control and
mechanical design of smart material systems, in order to better evaluate their utility.

References

von Cieminski, J. and H. Beige, 1991. "High-signal electrostriction in ferroelectric materials,"

Journal of Physics D 24[7], 1182-1186.

Cross, L.E., 1987. "Relaxor Ferroelectrics," Ferroelectrics 76, 241-267.

Cross, L.E., S.J. Jang, R.E. Newnham, S. Nomura and K. Uchino, 1980. "Large
electrostrictive effects in relaxor ferroelectrics," Ferroelectrics 23, 187-192.

72



Damnjanovic, D. and R.E. Newnham, 1992. "Electrostrictive and piezoelectric materials for
actuator applications," Journal of Intelligent Material Systems and Structures 3, 191-209.

Ealey, M.A. and P.A. Davis, 1990. "Standard SELECT electrostrictive lead magnesium
niobate actuators for active and adaptive optical components," Optical Engineering
29(11], 1373-1382.

Galvagni, J. and D. Dupr6, 1990. "Electrostrictive actuators, precision electromechanical
components," Technical Information, AVX Corporation, Myrtle Beach, SC.

Grindlay, J., 1970. An Introduction to the Phenomenological Theory of Ferroelectricity,
Pergamon Press, New York, New York.

Moulson, A.J. and I.M. Herbert, 1990. Electroceramics: Materials. Properties. Applications,
Chapman & Hall, New York, New York.

Namboodri, C.G. and C.A. Rogers, 1992a. "Tunable Vibration/Strain Sensing with
Electrostrictive Materials," Proceedings of the Conference on Recent Advances in
Adaptive and Sensory Materials and their Applications, Blacksburg, VA, 285-297.

Namboodri, C.G. and C.A. Rogers, 1992b. "Experimental Investigation of the Electrostrictive
Relaxor Ferroelectric Lead Magnesium Niobate-Lead Titinate," submitted to the Journal
of Material Science, November 1992.

Newnham, R.E., 1991. "Tunable transducers: nonlinear phenomena in electroceramics," N1ST
Special Publication 804, Chemistry of Electronic Ceramic Materials, Proceedings of the
International Conference, Jackson, WY.

Pan, W.Y, W.Y. Gu, D.J. Taylor and L.E. Cross, 1989. "Large piezoelectric effect induced
by direct current bias in PMN:PT relaxor ferroelectric ceramics," Japanese Journal of
Applied Physics 2814], 653-661.

Shrout, T.S., U. Kumar, M. Megherhi, N. Yang and S.J. lang, 1987. "Grain size dependence
of dielectric and electrostriction of Pb(Mg2 f3Nbv 3)O3-based ceramics," Ferroelectrics 76,
479-487.

Viehland, D., S.J. lang, L.E. Cross and M. Wuttig, 1990. "Freezing of the polarization
fluctuations in lead magnesium niobate relaxors," Journal of Applied Physics 68[6],
2916-2921.

Zhang, Q., W. Pan, A. Bhalla and L.E. Cross, 1989. "Electrostrictive and dielectric response
in lead magnesium niobate-lead titinate (0.9PMN:0.1PT) and lead lanthanum zirconate
titinate (PLZT 9.5/65/35) under variation of temperature and electric field," Journal of

the American Ceramic Society 72[4], 599-604.

73



Zhang, X.D. and C.A. Rogers, 1992. 'A macroscopic phenomenological formulation for
coupled electromechanical effects in piezoelectricity," Proceedings of the Conference on
Recent Advances in Adaptive and Sensory Materials and their Applications, Blacksburg,
VA, 183-203.

74



xlO4
2.2

Frequency: 100 Hz
2 Bias Field: 0 Vim

1.8

1.6

a1.4 model

1.2

0.8
20 30 40 50 60 70 80 90

Temperature (C)

Figure i Comparison of Shrout's dielectric phase transition model with experimental

data.

75



xl04

2.2

Zero Bias Field

2

., 1.8

. 1.6

100 Hz: da*ta __model

S 1.4- 500 Hz: coo data --- model

1 kHz: +++ data ...... model

"1.2 2 kHz: xxx data -.-.- model

1 p . . p

20 30 40 50 60 70 80 90

Temperature (C)

Figure 2 Comparison of frequency-dispersive, dielectric phase transition model with

experimental data.

76



0

-50- 85 C

" -100 •
665 C

.• 150-

. -boM -200-

.-250

Lt -300

L350 data model 25 C
-350

-400 ,
0 100 200 300 400 500 600 700 800 900 1000

Applied Bias Field (kV/m)

Figure 3 Comparison of hyperbolic tangent polarization model with DC free-induced

strain experimental data.

77



x10 4

3.5

Sdata model

3-

2.5

2-

1.5

Bias Field: 581 kV/m

20 30 40 50 60 70 80 90

Temperature (C)

Figure La Comparison of DC relative susceptibility model results with reduced data

from DC free-induced strain response experiments versus temperature.

78



X10 4

1.6

100 Hz: **data __model

1.4- 500 Hz: ooo data --- model

1 kI-z: .i+++data .... model

>%2 kHz: xxx data -.-- model

1.2-

Q0.8-

0.6-

Bias Field: 581 kV/m

0.4
20 30 40 50 60 70 80 90

Temperature (C)

Figure 5 Comparison of AC relative susceptibility model results with reduced data

from permittivity response experiments versus temperature at various frequencies.

79



xl0-10
7

6- 100 Hz: *** data __ model
500 Hz: ooo data model

5 - 1 kHz: +++ data ...... model

SkHz: xxx data -.-.- model

-• 4
o 0
3- ------------- 02 - .. . ...........

t- 2 +.÷

S"" " "'".....+ .......................

°< ..... .....1 -. -'*......o........ -..........

0 x
Bias Field: 581 kV/m

-11
20 30 40 50 60 70 80 90

Temperature (C)

Figure 6 Comparison of electrostrictive constitutive model results with data from AC

actuator response experiments versus temperature at various frequencies.

80



x10
4

1.6 .

1.55- • 116 kV/m: * data model

349 kV/m: ooo data ----- model

1.5 / "" •.581 kV/m: ... data ... model

1.45

1.45-

=_ .. ... . . . . .

"1.35 .........

.... ...... .... ... . ........ .........
S 1.3 ...

1.25-
1.-5.

1.2 Temperature: 45 C " .

1.15 1 -I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)

Figure 7 Comparison of AC relative susceptibility model results with reduced data

from permittivity response experiments versus frequency at various bias fields.

81



xlO-'0

SI

> 445"C
6 kA' da. rnd

'I

-01
Temiperature: 45 C

0 200 400 600 800 1000 12 00 1400 1600 18, 0 2000

Frequency (Hz)

Figure 8 Comparison of electrostrictive constitutive model results with data from AC

actuator response experiments versus frequency at various bias fields.



xl04

S•25 C: "data _model

4.5- -- 45 C: ooo data ---- model

"C: +*--+ data ..... model
4 85 C: xxx data model

3.5- -i

2.5

U .

0 l00 200 300 400 500 600 700 800 900

Applied DC Field (kVim)

Figure 9 Comparison of DC relative susceptibility model results with reduced data

from DC free-induced strain response experiments versus bias field.

83



xl041.6...

Frecquenc: 200 Hz

1.4-

1 245 C: 000data model• .') 45 C: oo data mode
"65 C: +-+ data ...... model

1 85 C: xxx data -.-.- model

U 0.8- -

0.4,
0 100 200 300 400 500 600 700 800 900

Applied DC Field (kV/m)

Figure 10 Comparison of AC relative susceptibility model results with reduced data

from permittivity response experiments versus bias field at various temperatures.

84



xlO-10

7

25 C: *** data model
6 45 C: ooo data --- mode!

65 C: +++ data ...... model

S85 
C : xxx data . m odel

i0
4- . .. ... ... .. .. ... .. .... .. .

3

E 2-

<

- ~... .. ...-".......

,....o . °*1.............

4

Frequency: 200 Hz

0 100 200 300 400 500 600 700 800 900

Applied DC Field (kV/m)

Figure 11 Comparison of electrostrictive constitutive model results with data from AC

actuator response experiments versus bias field at various temperatures.

85



x10 7

6. .

814 kV/m: xxx data -.-.- model Temperature: 25 C

,581 kV/m: +++ data ...... model

349 kV/m: ooo data ----- model

116 kV/m: ***data model

Eo° I•: ...... .. .. ..... ................................................. I , . .. .

E !
2--- --- ---- ---......

00

0

0 50100150 002oo 0o 3 00350 004 50 500

Frequency (14z)

Figure 12 Comparison of electrostrictive constitutive model results with data from AC

sensor response experiments versus frequency at various bias fields.

86



An Impedance Modeling Technique for
Dynamic Analysis of Adaptive Materials

87



An Impedance Method for Dynamic
Analysis of Adaptive Material Systems

C. Liang, F. P. Sun, and C. A. Rogers
Center for Intelligent Material Systems and Structures

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0261

Tel. (703)231-2900, Fax (703)231-2903

Abstract

This paper describes a new approach to analyzing the dynamic response of active material
systems with integrated induced strain actuators, including piezoelectric, electrostrictive, and
magnetostrictive actuators. This approach, referred to as the impedance method, has many
unique advantages compared with the conventional static approach and the equivalent thermal
expansion approach, such as pin-force models and consistent beam and plate models. The
impedance approach is presented using a simple example, a PZT actuator driven one-degree-of-
freedom spring-mass-damper system, to demonstrate its ability to capture the physics of adaptive
material systems and its utility and importance by means of an experimental example and a
numerical case study.

The conventional static and equivalent thermal expansion approaches are briefly summarized.
The impedance methodology is then discussed in comparison with the static approach. The basic
elements of the impedance method, i.e. the structural impedance corresponding to actuator
loading and the dynamic output characteristics of PZT actuators, are addressed. The advantages
of using the impedance approach over conventional approaches are discussed using a simple
numerical example. A comparison of the impedance method with the static and equivalent
thermal expansion approaches are provided at the conclusion of this paper.

Introduction

There are two approaches currently used in the dynamic analysis of active material systems, one
is referred to as a static approach and the other i. an equivalent thermal expansion approach.
Both of these approaches have some drawbacks in analyzing the dynamic response of active
material systems resulting from the activation of integrated induced strain actuators, such as PZT
patches. A brief review of these two approaches is given below.

Static Aproach

The static approach refers to the method of using a statically determined equivalent force or
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moment as the amplitude of the forcing function to determine the dynamic response due to the
activation of integrated induced strain actuators. There are several approaches to determining
the equivalent force or moment from bonded PZT actuators. One widely used approach is the
PIN force model. In the pin force model (Crawley and Deluis, 1989), it is assumed that the
mechanical interaction between a bonded actuator and its host structure occurs at the ends of the
actuator in the form of concentrated forces. This concentrated force can be determined based
on the geometrical compatibility and static force equilibrium between the actuator and beam.
This concentrated force or moment is then used to represent the effect of the induced strain
actuator in static and dynamic analyses.

Another widely used approach for determining the static equivalent force or moment uses Euler-
Bernoulli beam equations (Crawley and Deluis, 1989) or consistent plate equations which are
fundamentally the same as the pin-force models except for a variation in the assumed strain
field. The equivalent force or moment determined from Euler-Bernoulli beam theory is also
more accurate than the pin-force model because it includes the mechanical stiffening and the
bending of the bonded PZT actuators.

Lin and Rogers (1992) have developed a new model of the equivalent force and moment using
an elasticity approach, which shows the nonlinear distribution of the equivalent induced force
or moment. This model is very accurate for static analysis.

The static approach, as will be discussed in this paper, should be avoided in the dynamic
analysis of active material systems.

Equivalent Thermal Expansion Approach

The equivalent thermal expansion approach is a new term used in this paper. It summarizes how
finite element method determines the structural response resulting from the induced strain effect
of various actuator, including piezoelectric ceramics, shape memory alloys, etc. (Liang and
Rogers, 1989; Hagood et al., 1990; Sung et al., 1992).

The electric induced strain from any induced strain actuator (i.e., PZT or PMN) has the same
effect as thermal expansion on the structural response. When using the equivalent thermal
expansion approach to determine the dynamic response of an active material system, the
actuators are treated as regular integrated structural components with associated mass, stiffness,
and damping. The activation is represented by the excitation forces at the actuator locations.
The amplitude of the forcing functior is a constant and is equal to the blocking force of the
induced strain actuators.

The equivalent thermal expansion approach does give accurate prediction of the dynamic
response. However, there are some drawbacks associated this approach as will be discussed
later.

In this paper, an impedance approach for dynamic analysis of active material systems will be
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presented. Numerical results of the dynamic response of a beam excited by a PZT actuator
based on various approaches discussed will be provided. ThiL. paper will also provides a
comprehensive comparison between static, equivalent thermal expansion, and impedance
approaches.

Impedance Methodology

The impedance method of analyzing the dynamic response of active material systems can be
simply described: the interactions between actuators and structures are governed by the dynamic
output characteristics of actuators and the dynamic characteristics of the structures, i.e., the
structural impedance. Let us study the basic elements of this approach by examining the
following example, a PZT actuator-driven one-degree-of-freedom spring-mass-damper (SMD)
system.

Before we start, let us briefly discuss how the static response of a PZT/structure interaction is
determined. Considering a PZT-driven spring system as shown in Fig. 1, the constitutive
relation of PZT yields the following force-displacement relation:

F=KA (x-xlf) , (1)

where x is the displacement. F is the force exerted by the actuator. KA is the static stiffness
of the PZT given by Yz22 wAhA/Il where wA, hA, and lA are the width, thickness, and length of
the PZT actuator, respectively. xi, is the free induced displacement of the actuator given by
d32ElA where d32 is the piezoelectric constant and E is the electric field. The force and
displacement relation for the spring is given by:

F=-Ksx, (2)

where Ks is the spring constant of the spring. Equations (1) and (2) describe the force and
displacement relations of the PZT actuator and spring. The force given by both equations is the
force within the components. The force and displacement convention is positive for tension and
negative for compression. If the induced displacement of the PZT actuator, xi,, is in the positive
direction (also positive x direction as shown in Fig. 1), the resulting force in the spring is
negative as expressed by Eq. (2).

Figure 2 illustrates the force-displacement relations of both the PZT actuator and spring. The
intersection determines the static equilibrium of the actuator and spring system. A so-called
"equivalent force" can be determined as:

Fog=A9 Xi,(
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The "equivalent force" is used to represent the presence and activation of the PZT actuator in
the static approach. To determine the dynamic response of a mechanical system, as shown in
Fig. 3, with the static approach, the governing equation is expressed by: m i + c x + K~x =
F,q sin(wt), where F, is determined from Eq. (3). Notice that the stiffness of PZT is not
included and this "equivalent force" is a CONSTANT.

The impedance approach will treat the problem differently. As an example of how the
impedance approach determines the dynamic response of an actuator-driven system, ccnsider the
PZT-driven one-degree-of-freedom spring-mass-damper (SMD) system shown in Fig. 3. On the
spring side, the following relation based on the concept of mechanical impedance should be
utilized:

F=-Z*k, (4)

where Z is the mechanical impedance of the SMD system given by:

Z=c+m (5)

where i is (-1)"t, c is the damping coefficient, m the mass, w the excitation frequency. The
reason for the negative sign in Eq. (4) is the same as that in Eq. (2). ca, the resonant frequency
of the SMD system, is given by:

0 (6)•n =Vsm-/ •( I

Consider
k=•ix ,(7)

the force-displacement for the SMD can be expressed as:

F-DX=- [ c(Ai-m (W2-C0) ] X,()F=-K (8)

where KD is called the dynamic stiffness.

In static analysis, the force-displacement relation of PZT, according to the constitutive equation,,
is given by Eq. (1). In the dynamic analysis, Eq. (1) is not longer adequate. The dynamic
output characteristics of PZT actuators must be used, which can be determined based on a
coupled electro-mechanical analysis.

Dynamic Output Characteristics of PZT Actuators
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Consider the PZT actuator shown in Fig. 3, the electric field is applied in the z-direction and
it is assumed that the PZT expands and contracts only in the y-direction. The constitutive
relation of the PZT of the (T, E)-type (stress and electric field as independent variables) may
be expressed as follows:

a(9)S2= 22 T2 +d32E (9)

and

D3=7? E+d32T2 , (10)

where S2 is the strain, T2 the stress, S-2 the complex complian'e at zero electric field, d32 the
piezoelectric constant,733

T the complex dielectric constant at zero stress given by e33'(1-6i), 6 the
dielectric loss factor, and D3 the electric displacement.

The equation of motion for a PZT vibrating in the y-direction may be expressed as follows:

"PT- 22"y2

where v is the displacement in the y-direction, p is the density of the PZT, Y22E = Y 22E (1 +iw),
is the complex modulus of PZT at zero electric field, and ?I is the mechanical loss factor of PZT.

Solving Eq. (11) by separating the displacement v into time and spatial domain solutions yields:

v=Ve"'t= (Asinky+Bcosky) ell, (12)

where

2k /;2 =C,2/i * (13)

The PZT is connected to a structure which is represented by its impedance, Z. The equilibrium
and compatibility relation between the structure and the PZT can be described by:

T- ,, e . =- 27vY.1,iC, e ,),14
T2 I=T 2yIA e WAhA " (14)

The simplest expression for structural impedance is the one given by Eq. (5) for a one-degree-of-
freedom SMD system.

Equation (14) provides one boundary condition for Eq. (12). Another boundary condition is
given by vy.O = 0, which leads to B=0.
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Substituting Eq. (14) into Eq. (9) yields:

-yWlA=-S22 WAhA +d32E. (15)

Note: a bar over a variable indicates its spatial component except complex material properties,
such as - 2E and Y,. The coefficient, A, in Eq. (12) can be solved from Eq. (15) as:

A= d32
(16)

kcos (klA) + a sin(klA)
WAhA

In order to simplify further derivation and help us to explain the physics from a point of view
of impedance matching, the mechanical in.pedance of PZT actuators is introduced here. If a
constant force excitation is applied to a PZT actuator, such as the one shown in Fig. 3, the
actuator response can be determined following the same derivation outlined in Eqs. (12) to (16).
The mechanical impedance of the PZT actuator defined as the ratio of excitation force to velocity
response may be expressed as:

ZA=- gkA (17)
tan (klA)i1

Note, the mechanical impedance of the actuator defined above is based on the assumption that

the PZT actuator behaves like a passive material and has no electric coupling.

The coefficient, A, given by Eq. (16) can then be simplified as:

A= ZAd 3 2 E (18)

kcos (klA) (ZA+Z)

It is necessary to mention here that the second constitutive relation of PZT given by Eq. (10)
is not used. Physically, this indicates that the power supply always satisfies the current
requirement of the PZT actuators.

The output displacement of the PZT actuator and the strain and stress field, az well as the
electric displacement field can then be solved as follows:

_ _ ZAd 3 2El'A tan (k/A) (19)

ZA+Z klA
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and the strain:

S-ZAd 3 2 E, cos (ky) (20)ZA+Z cos (klA)

and the stress:
ZA cos (ky) (21)

T2 ZA+z cos (klA) -1) 3 2  E (21)

and the electric displacement field:

D = A2"cos (ky) -- d "Y2) E (22)ZA+Z cos (kl1A)-

The force output from the actuator (within the actuator) can be obtained from Eq. (21) as:

F-WAhAT2 Z - Z d3 2 Y! w hA (23)Z-A A 32Z 2

The output characteristics of a excitation device, such as a shaker, are usually expressed in terms
of its free stroke and dynamic blocking force. The free stroke of a PZT actuator, -f, can be
calculated from Eq. (19) by assuming the mechanical impedance, Z, to be zero, yielding:

3t=d32zlA tan (klA) (24)
klA

The dynamic blocking forceFb, can be determined from Eq. (23) by assuming an infinite
mechanical impedance, Z, yielding:

Fb F2E4d3 2EwAhA. (25)

Equations (24) and (25) provide the dynamic output characteristics of PZT actuators. Based on
Eq. (25), the dynamics blocking force of a PZT actuator is constant, regardless of the frequency
variation, which is superior to shakers whose dynamic blocking force is constant in only a
limited frequency range. However, it is necessary to state that, although a PZT actuator has a
"constant" dynamic blocking force, the forces acting on a structure from integrated PZT
actuators are not necessarily constant. The interaction forces from the integrated actuators are
functions of the structural impedance, as will be discussed later.
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The free stroke of a PZT actuator is a function of frequency. At the resonance of the PZT
actuator corresponding to kiA=(n-1/2)w, where n can be any positive integer, the splacement
output for a PZT can be infinite if there is no damping (tangent function is inL. _ at these
valt~i's). However, as a transducer, the operation frequency range should be far below its first
resonant frequency, for examp., below 1/5 of the resonant frequency as a rule-of-thumb. Thus,
a PZT actuator may be treated as a constant displacement output device (d32EA). This
approximation causes less than 3% error. For example, if the length of an actuator is 0.05 m,
the Suggested Operation Frequency Range (SOFR) which is 1/5 of the first resonant frequency
of the PZT actuator, will be from DC to around 2.8 kHz.

If a PZT actuator is driving a mechanical system, the output force and displacement of the PZT
actuator are related. This relation can be determined by combining Eq. (19) and (23) to
eliminate the structural impedance term, Z, yielding:

F=KA(1+i q) tan (kA)+Fb (26)

Compared with the static force-displacement relation given by Eq. (1), Eq. (26) includes
structural damping and the dynanmics of the actuator. If the frequency is within the SOFR,
tan(klA)/kl^ is about 1. A PZT actuator may be treated as a linear output eevice independent
of frequency.

Determination of Actuator/Structure Dynamic Interaction

If the dynamic characteristics of the structure and actuators are known. The dynamic interaction
between the structure anti actuator can be determined from the Dynamic Actuator/Structure
Interaction Chart (DASIC), as shown in Fig. 4. In Fig. 4, the dynamic output characteristics
of a PZT actuator given by Eq. (26) is independent of frequency if the frequency is within the
SOFR. The dynamic characteristics of the mechanical system a given by Eq. (8) are represented
by a group of rotating lines, as shown in Fig. 4. The intersection of the rotating lines with the
output characteristics of the PZT determines the dynamic response. Note that the dainping is
not included in the DASIC. When the excitation frequency is zero, the intersection of the
dynamic force-displacement lines of the SMD and PZT is the same as the static response
determined in Fig. 2. When frequency increases, the F-D lines of the SMD system rotates
counter-clockwise around the origin of the coordinate system. The new intersection point of the
F-D lines of the SMD system (non-zero frequency) and PZT actuator determines the dynamic
response of the system. When the excitation frequency is the same as the resonant frequency
of the SMD system, w., the F-D line of SMD is coincident with the displacement axis. This
indicates that the PZT actuator is free to expand and contract and the stress inside the actuator
is zero, which implies that the induced force of the actuator is zero. When the excitation
frequency is greater than w., the mechanical displacement of the PZT actuator is larger than the
free stroke, x,.. This indicates that the PZT actuator is stressed and deformed by the inertia of
the mass and the recovery of the spring. If the excitation frequency is equal to the resonant
freqaincy of the entire system (PZT + SMD), ., which corresponds to the line parallel to the
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F-D relation of the PZT, the force and displacement within the actuator and spnng are infinite.
w. can be approximated from the following expression:

KA-Ks (27)

where mA is the mass of the actuator.

If the excitation frequency is greater than Z;, the displacement response is out-of-phase with
respect to the displacement response before the frequency reaches L.. The dynamic equilibrium
is in the third quadrant as shown in Fig. 4. If the frequency is infinite, the F-D line of the SMLD
is coincident with the force axis, which means that the SMD is dynamically rigid. The force
provided by the actuator is the dynamic blocking force, F.. However. it is necessary, to
remember that the excitation frequency needs to be within the SOFR in order to use this chart.
If the excitation frequency is greater than the SOFR, the variation of the actuator output
characteristics needs to be considered. This can be done by rotating the F-D line of the PZT
actuator clockwise around the point corresponding to the blocking force.

The actuator/structure interaction can also be explained using the concept of mechanical
impedance matching in Eq. (23). If the impedance of the mechanical system is at its lowest
which corresponds to its resonance, the force provided by the PZT actuator is at its lowest. This
corresponds to the case where the F-D line rotates to coincide with the displacement axis. If
the structural impedance matches the actuator impedance, the actuator provides the maximum
force. In DASIC, actuator and structure impedance matching is represented by their parallel F-
D lines. It is necessary to state that the impedance matching between an output device and its
load means that both impedances are complex conjugate.

Calculation of the Structural Impedance

In order to use the impedance approach, the structural impedance corresponding to actuator
loading must be calculated first. The excitation force provided by integrated actuators can be
very complicated. For example, the actuation provided by a PZT actuator bonded on a beam
is shear force and its distribution may be expressed with a hyperbolic tangent function (Lin and
Rogers, 1992). Determination of the structural impedance corresponding to a distributed
actuator can be very difficult. In this paper, the structural impedance of beams corresponding
to two types of actuator excitation will be discussed.

Consider a beam structure with a complex modulus of elasticity VD, mass density p,. and
moment of inertia over area K2. The equation of motion for the transverse deflection y(x,t) is:

a2y _ 2 a4Y'y P (X, t) (28)
at, WxP paa
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where p(x,t) is the external dynamic loading, 'a' is the cross-sectional area of the bcam, and
is the complex wave speed of the beam given by:

(29)

The governing Eq. (28) is solved by expanding the transverse displacements and external loads
in terms of the eigenfunctions, x).(x), of the beam. The applied forcing function is harmonic
and can be expressed as:

p (X,t) = P.x. (x) exp (i wt) ,(30)

a.|

where w is the driving frequency and x.(x) can be determined based on the boundary conditions
of the beam. The transverse displacements can also be expressed in terms of the eigenfuncuons
of the beam as:

y (X,t) = W.X. (x) exp (i wt) (31)

The modal amplitudes, W., can then be solved by substituting Eqs. (30) and (31) into Eq. (28).
For example, if the boundary condition of the beam is simply-supported, the modal amplitude
may be determined as:

W ~P.IPea

WE, (32)

where L is the length of the beam.

Consider a beam with two PZT actuators bonded on top and bottom. The actuators are activated
out-of-phase, resulting in a pure bending excitation. The effect of the actuators can be
represented by a pair of bending moments, M. If the two ends of the actuators are at t and •.
respectively, the moment distribution may be expressed as follows using the Heaviside functions:

M(X) =M[H(x-t2) -H(X-tl) I] (33)

The pressure function, p(x), can be expressed with the dipole function as:
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Wx - m(x) M[61(x-t.) -81(x-t) (34)
dx2

The modal amplitudes for the pressure expression, P., can be calculated using the following
expression:

P' 0P(x) X, (X) dX (5
f,'•x, (x) dx

The modal amplitudes for the displacement expression can be calculated from Eq. (32). The
equivalent rotational structural impedance corresponding to the pure bending moment of the
actuators is defined to be:

M M (36)(62-8,) (62-e,8 •

where 01 and 62 are the rotation angles at Z, and E2, respectively, which are found by
differentiating the transverse deflection with respect to x:

0-I (37)

2 W.x.

The equivalent structural impedance given by Eq. (36) needs to be modified in order to be used
in Eqs. (19) to (23). The interaction between the beam and actuator previously discussed may
be represented by a simple system of two actuators creating pure bending moment to drive a
rotational mass-spring-damper system having the same rotational impedance as given by Eq.
(36), as shown in Fig. 5. The two actuators have the same length 1A, width WA, and thickness
hA, and they are ha apart, where hB is the thickness of the beam. If tne rotation of mass is 0,
the axial displacement of either of the actuators, x, will be 6h9/2 (assuming small deformation).
The dynamic force equilibrium and geometrical compatibility together may be expressed as:

F= [ 2 ZR/ (hB+hA) 2]k=Zk • (38)

The equivalent mechanical impedance determined from Eq. (38) can be directly used in Eqs.
(19) to (23) to determine the stress, strain, force, displacement, and electric displacement of the
PZT actuators. It is also necessary to mention that the mechanical impedance of the actuator,
ZA, used in those equations needs to be doubled since the thickness of the equivalent actuator
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has been doubled considering two actuators on top and bottom of the beam.

For an actuator whose effect can be represented with a point loading, such as a stacked PZT
actuator used in truss structures and a magnetostrictive actuator, as shown in Fig, 6, the
definition of corresponding structural impedance to the actuator loading can be expressed as:

z- . (39)

This impedance is usually determined by calculating the structural response, x, corresponding

to an arbitrary force, F, at the actuator location.

Determination of Structural Dynamic Response

Once the structural impedance corresponding to the actuator load is calculated, the stress within
the actuators can be determined from Eq. (21). The actuator excitation, whether it is a moment
or torce, can then be determined. For example, if the actuators create pure bending, the
excitation moment can be determined as:

NA ' T2 wAhAh . (40)

If the magnitude of moment in Eq. (33) is assumed to be unity, the corresponding modal
amplitudes can be found to be WW. from Eq. (32). The actual dynamic response of the beam can
then be determined based on the following modal ampli-nde:

w. =M fi. .(41)

Numerical Example

Figure 6 shows a cantilever beam with a PZT actuator support vertically at 0.025 m away from
its root. The d32 effect of the actuator is utilized to generate a vertical excitation. The beam is
made of aluminum with a density, pD = 2700 kg/m 3, elastic modulus Y8 = 60 GPa, length, 1,
= 0.25 m, width, w5 -= 0.02 m, and thickness hl= 2 mm. The loss factor for the aluminum
is assumed to be 0.005. The PZT actuator has a width WA = 2 mm, length, 'A = 0.05 m, and
thickness, hA = 0.25 mm. The basic material properties for the PZT material (G 1195) are listed
in Table 1.

Table 1: Material Properties of G 1195 PZT (from Piezo System, Inc.)

d2 Y22 p C33  617
(m/volt) N/m' kg/m-' Farads/m

-166x10" 2  6.3x10'0  7650 1.5xlO' 0.00015 0.001
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Assuming the electric voltage applied to the PZT actuator is 100 volts, the dynamic response of
the beam at a point 0. 1 m from the root of the beam is calculated using static, equivalent thermal
expansion, and impedance method, and is illustrated in Fig. 7. The solid line is from the
impedance approach, which is completely coincident with the dashed line predicted using the
equivalent thermal expansion approach with BEAM VI program (Mitchell, 1992)_ The response
predicted by the static approach is given by the dash-dotted line. It is apparent that the static
approach fails to include the stiffening of the PZT actuator, which in this case is significant.

The electro-mechanical power can also be calculated based on the electric displacement given
by Eq. (22). The resistive and reactive power of the coupled electro-mechanical system can men
be determined, as shown in Fig. 8. The resistive power represents the actuator power
consumption due to the mechanical damping of the PZT actuator and the beam as well as the
dielectric loss of the PZT actuator. The reactive power reflects the transfer of the kinetic or
potential energy of the entire mechanical system as well as the reactive electric field energy.
Detailed discussion of power consumption and energy transfer can be found in previous work
(Liang et al., 1992 and 1993).

Experimental Validation

Rossi et al. (1993) have applied the impedance approach presented in this paper to study the
dynamic response of cylindrical structures. Experiments have also been conducted to verify the

utility of the impedance model for shell structures. A brief discussion of the experimental
results is provided here.

The test article is an aluminum ring with two bonded curved PZT actuators, as shown in Fig.

9. The out-of-plane displacements at point 1, 2, 3, and 4 are measured with VPI (vibration
pattern image) laser system. The measured velocity response and the theoretical prediction
based on the impedance and static approach at point #4 is plotted in Fig. 10. In Fig. 10, the
solid line is the experimental results, the prediction using the impedance approach is given by
the dashed line, and the result of using the static model is illustrated by the dash-dotted line.

It is apparent that the results by the impedance approach agree extremely well with the
experimental results while the static approach failed to predict the second and the forth mode.
Detailed discussion on these experimental results can be found in the paper by Rossi et al.
(1993) as well as in the following discussion.

Discussion of the Numerical Results

What are the dynamic mechanics of active material systems? The following discussion of the
simple example above will establish an understanding of the dynamic interaction between

actuators and their host structures. Figure 11 shows the mechanical impedance of the cantilever
beam at the point of PZT actuator support (dashed line). The mechanical impedance of the PZT
actuator according to Eq. (14) is also calculated (dash-dotted line). The valleys of the
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mechanical impedance curve of the beam correspond to the resonances of the cantilever beam,
which indicates that at the resonance, the beam is dynamically very soft. This is the reason why
the force output from the PZT actuator is the lowest at the resonance of the beam, as shown by
the solid line in Fig. 11. When the impedance of the actuator matches the impedance of the
beam, the force output of the PZT actuator is maximum. Note: there are two intersections
between the mechanical impedance curves of the PZT actuator and the beam around each peak;
only the first intersection which corresponds to the complex conjugates of impedances is
physically meaningful. The frequency corresponding to the first intersection is also the resonant
frequency of the entire mechanical system (beam and PZT support) as explained in DASIC.

The stiffening effect on the resonant frequency due to the extra stiffness of the PZT actuator can
be determined based on the actuator and structural impedance match. If the width of the
actuator in the above numerical example increases, the mechanical impedance of the PZT
actuator also increases. The frequency corresponding to the first intersection around every peak
of the beam impedance curve will increase, as can be seen in Fig. 11. A higher resonant
frequency indicates more stiffening from the PZT actuator. When the stiffness or impedance
of the PZT actuator is so high that the actuator behaves like a rigid support, the resonant
frequencies are those corresponding to the peak frequencies of the beam impedance curve. This
happens when the actuator impedance curve intersects at the peak or is completely above the
beam impedance curve.

The force applied to the beam by the actuator, referred to as the actuator force output in this
paper (which is actually the force within the actuator), is apparently not a constant, as illustrated
by the solid line in Fig. 1I. The lower dotted line is the equivalent force used in static analysis,
as determined from Eq. (3). The difference between the two clearly indicates the incorrect
physical representation of the static model. The higher dotted line in Fig. 11 is the dynamic
blocking force used in the equivalent thermal expansion approach. Using this constant force as
the excitation does not make any sense in terms of the explaining the physics of the dynamic
interaction between actuator and structure. Notice that around the resonances of the entire
system (PZT actuator and beam), which correspond to the peaks of the PZT force curve
predicted based on the impedance approach, the force inside the actuator (or the force acting on
the beam provided by the actuator) can be larger than the dynamic blocking force illustrated by
the higher dotted line. This has been observed experimentally and is due to the reactive nature
of a vibrating system, and is clearly illustrated in DASIC. Another interesting thing to notice
in Fig. 11 is that at the anti-resonant frequencies of the beam, the actuator output force is the
same as the dynamic blocking force. This is shown in Fig. 9 by the second intersection point
between the higher dotted line and the solid line around each peak of the force curve.

The impedance approach to determining the dynamic response is very different from the other
two approaches. In experimental modal analysis, the resonance of a system is determined by
the frequency response function which is the ratio of the response to the excitation force. This
is simply because the excitation force provided by most excitation devices, such as shakers, is
not a constant for the same reason stated in this paper. Using a response resulting from a
variable force tends to provide misleading results. For example, if the excitation device is a
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shaker, the frequency corresponding to a peak of the response curve is not the actual resonant
frequency of that mode because of the extra mass loading from the shaker. Similarly, if the
excitation device is a PZT actuator which has one end fixed as in the numerical example in this
paper, the peak frequencies are higher than their corresponding resonant frequencies of the
original mechanical system, such as the cantilever beam in the numerical example, because of
the stiffening effect. Only when the excitation force is a constant the resonant frequencies
determined from the peak frequencies are equal to the true resonance frequency. In the
impedance approach, the frequency response function is first calculated by using a constant unit
force, the dynamic response is then determined by multiplying the frequency response function
with the actual actuator force output determined from the impedance approach. This is why
the response predicted by the impedance approach can accurately reflect the mechanical
stiffening of the actuators. It is necessary to say that induced strain actuators do not always
stiffen the original mechanical system, even in the case where bonded PZT actuators are used
to excite a structure. In this case, the impedance approach can still accurately predict the
influence of actuator mass loading.

To further illustrate how the impedance approach predicts dynamic response, let us examine Fig.
12 which shows the actuator force output (dashed line), beam response (dash-dotted line)
resulting from a unit force excitation (frequency response function), and the actual dynamic
response (solid line) of the entire mechanical system (PZT actuator and cantilever beam). We
already know from the force analysis above that the valleys of the force curve correspond to the
resonant frequencies of the cantilever beam, while the peaks correspond to the resonant
frequencies of ihe actuator and beam system. It is very clear that when multiplying the dashed
line and dash-dotted line to yield the solid line, the peaks of the solid line will represent the
resonance of the actuator and beam system.

Conclusions

The significant contribution of this paper is to introduce the impedance approach, which has
been well studied in the modal analysis field, to the area of active material systems. This
approach, compared with the static approach and the equivalent thermal expansion approach, has
many advantages. The most important advantage of the impedance approach is that it reflects
the physical essence of the mechanics of active material systems.

The work presented in this paper provides a methodology for analyzing the dynamics of active
material systems with integrated actuators. This methodology can be used with any actuators,
any material systems, and any structures as long as the structural impedance corresponding the
actuator loading and the dynamic output characteristics of the actuators can be determined. This
paper has also provided an approach to determining the structural impedance corresponding to
two types of actuator loading. The concept of DASIC can virtually be used to describe any
linear actuator/structure interaction.

This paper has used three approaches to determine the structural response. A comparison of the
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three approaches, static, equivalent thermal expansion, and impedance, is provided below.

* Static approach

This approach is simple and easy to use, but it can yield very misleading results especially when
the dynamic response is sensitive to actuator mass loading or stiffening. More importantly, this
approach does not correctly capture the physical essence of the actuator/structure interaction in
the dynamic scenario.

* Equivalent thermal expansion approach

The equivalent thermal expansion approach does predict the dynamic response accurately, but
it does not represent the physical essence of the mechanics of active material systems. The
thermal expansion approach requires including the mass and stiffness of the integrated actuator,
which sometimes can be inconvenient.

* Impedance approach

The impedance approach provide a straightforward approach to accurately determine the dynamic
response of active material systems. It represents the physical essence of the interaction between
actuators and structures. As a discretized method, the impedance approach can provide much
more information than the other descretized method, the static approach. This approach can
easily be used in the electro-mechanical analysis of an adaptive material system to determine the
electrical parameters, such as actuator power consumption and system power requirement. This
approach has also provided a window for studying of the energy consumption and transfer in an
active material system, which is a long-standing issue in the smart material system community.
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Figure 1. A spring driven by a PZT actuator.
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Figure 2. Determination of the static equilibrium.
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Figure 3. A schematic representation of the dynamic interaction between actuator and its host
structures illustrated by a PZT actuator driven one-degree-of-freedom spring-mass-damper
system.
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Figure 5. A simplified model for PZT actuators bonded on beam structures
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Figure 6. A cantilever beam excited vertically by a PZT actuator with one end fixed
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Figure 7. The dynamic response of the cantilever beam at 0. 1 mn from its root. Solid, lnc Is-
predicted by the impedance approach. The dashed line, which is completely Coincident NA ith the
solid line, is predicted by the equivalent thermal expansion approach. The da~sh-dotled line -'
from the static approach.
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I Figure 8. Resistive and reactive power supplied to the PZT actuator. Solid line is the resistive
power. Dashed line is the reactive power.
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' Figure 9. An aluminum ring excited by two PZT actuators. The velocity response of the ring
is measured at point Ct, #2, #3. and #4. (Rossi et al., 1993)
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Figure 10, Experimental Measurement and theoretical prediction of the velocity response of the
aluminum ring at point #4 (Rossi et al., 1993)
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Figure 11. Mechanical impedance of the beam at 0.1 m from the root (dash-dotted line),
mechanical impedance -f the PZT actuator (dashed line), force output from the PZT actuator
(solid line), equivalent force used by the static approach (lower dotted line), and the excitation
force used by the equivalent thermal expansion approach (upper dotted line).
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Figure 12. Determination of dynamic response based on frequency response function and
actuator force output. Dashed line is the actuator force output, dash-dotted line is the frequ.ency
response function, and the solid line is the true dynamic response predicted by the impedance
approach (actuator force output times the frequency response function).
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